L3 COMPLEX NUMBERS CHEAT SHEET

SURDS

- Here are some quick rules for surds:
- $\sqrt{a \times b}=\sqrt{a} \times \sqrt{b}$
- $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}$
$\Delta \frac{a}{\sqrt{b}}=\frac{a}{\sqrt{b}} \times \frac{\sqrt{b}}{\sqrt{b}}=\frac{a \sqrt{b}}{b}$
These will help you to simplify some expressions that involve surds, more important though is how to rationalise the denominator.
- If you have an expression like: $\frac{a+b}{c+\sqrt{d}}$ and are told to give an answer with no surd in the denominator then you are looking to multiply by the conjugate of the denominator, in this case $\frac{c-\sqrt{ } d}{c-\sqrt{ } d}$ and this will give you an expression without the surd in the denominator. Like so:
$\stackrel{a+b}{c+\sqrt{d}} \times \frac{c-\sqrt{d}}{c-\sqrt{d}}=\frac{a c-a \sqrt{d}+b c-b \sqrt{d}}{c^{2}+c \sqrt{d}-c \sqrt{d}-d}=\frac{a c-a \sqrt{d}+b c-b \sqrt{d}}{c^{2}-d}$
This looks complicated but will often simplify down very nicely in your exam!
- Notice as well that this can be done to fractions involving complex numbers, which is also how you divide complex numbers!

COMPLEX NUMBERS

- Recall that a complex number is a number that is made up of two parts, a real part and an imaginary part. We'll run through the basic arithmetic, given two complex numbers:
$\Delta z=a+i b, w=x-i y$
- Where $\mathrm{a}, \mathrm{b}, \mathrm{x}$ and y are all real numbers. Note that by convention, the i is written before the real coefficient, it doesn't really matter though. Be careful when following this, because the imaginary component of w is negative!

- Argand Diagram:

\diamond An argand diagram is a depiction of the complex plane, with the x-axis being the Real axis and the y-axis being the Complex axis, there are 4 quadrants, we'll call these I, II, III and IV and it looks like this:

- We can plot complex numbers on this by simply using the real and complex values of the number as the x and y components (just like a normal graph).

- Addition:

\diamond Addition of complex numbers is simple - it's as easy as adding the real parts and complex parts of the complex numbers.
$\Delta z+w=(a+x)+i(b+y)$

$$
=(a+x)+i(b-y)
$$

- Subtraction:
- Same goes for subtraction, given the same two complex numbers, z and w, then we have,
$\diamond z-w=(a-x)+i(b-y)$

$$
=(a-x)+i(b-y)
$$

- Multiplication:
- Multiplying is a little harder, here you need to expand the two complex numbers (just like for expanding regular algebraic expressions) so we have:
$\Delta z w=(a+i b)(x+i y)=a x+i a y+i b x+i^{2} b y$

$$
=(a x-b y)+i(a y+b x)
$$

\diamond Notice the $\mathrm{ax}-\mathrm{by}$, this comes from the fact that $i^{2}=-1$.

- Conjugate:

- Before we get to division it's probably good to talk about the conjugate of a complex number, this is just the complex number with the imaginary part being the opposite sign. We write the conjugate as the complex number with a little bar on top of it, so we have:
$\diamond \bar{z}=a-i b$
$\Delta \bar{w}=x+i y$
Simple as that!

- Division:

\diamond For division we have to multiply the whole thing by the conjugate of the denominator, like so:
$\stackrel{z}{w}=\frac{z}{w} \times \frac{\bar{w}}{\bar{w}}=\frac{a+i b}{x-i y} \times \frac{x+i y}{x+i y}$
I'm not going to expand this out, but you could try!

- Argument:

- The argument of a complex number is the angle that it makes with the real axis when plotted on an argand diagram, in other words it is the angle when written in polar form.
- To find the argument of a complex number it's nice to plot it on an argand diagram first, notice that whenever you draw a complex number on an argand diagram that you can draw a right-angled triangle. By convention the argument of a complex number is $-\pi<\arg (z)<\pi$. So in general we calculate the angle by using the trig relationship.
$\diamond \tan (\theta)=\frac{\text { opposite }}{\text { adjacent }}$
So, for the complex number z, this would be:
$\Delta \tan (\theta)=\frac{b}{a}$
$\Delta \theta=\tan ^{-1}\left(\frac{b}{a}\right)$
\diamond And noticing that we bound the argument, we can compute the argument for each quadrant using this table:

Quadrant	Sign of x and y	Argument
I	$\mathrm{x}>0$ and $\mathrm{y}>0$	$\tan ^{-1}(b / a)$
II	$\mathrm{x}<0$ and $\mathrm{y}>0$	$\pi+\tan ^{-1}(b / a)$
III	$\mathrm{x}<0$ and $\mathrm{y}<0$	$-\pi+\tan ^{-1}(b / a)$
IV	$\mathrm{x}>0$ and $\mathrm{y}<0$	$\tan ^{-1}(b / a)$

- Modulus:

The modulus is also fairly simple, we simply find the length of the complex number, again if we notice that when we draw a right-angled triangle then using a complex number like $w=a+i b$, the length $|w|=$ $\sqrt{a^{2}+b^{2}}$. Notice that this is always positive, because we cannot have a negative length.

- Theory

There are a few things that you should be aware of when doing this paper, we will outline them here.

- Remainder Theorem:

Essentially, this states that for a given polynomial $f(x)$, a linear factor $(x-r)$ is a divisor if and only if $f(r)$ $=0$. Therefore, if the factor $(x-r)$ has a remainder R then $f(r)=R$, this can be used to find unknown constants in exam questions. We can also use a technique called synthetic division to find the remainder that a factor has.

- Fundamental Theorem of Algebra:

This states that for a given polynomial of degree n, e.g. x^{n}, there are exactly n roots, so for a quadratic there are 2 roots, a cubic, 3 roots and so on.

- Conjugate Root Theorem

If you are given one complex root like $a+i b$ of a polynomial, one other root must be the conjugate of that root, i.e. a - ib. This is super useful for exam questions because they will often give you one complex root but not give you the other!

