© Complex Numbers Checklist

Use this alongside our Walkthrough Guides to tick off the concepts you're confident with to plan your study and find areas of improvement!

Surds

I can explain what a surd isI can explain the difference between a rational and an irrational numberI can explain why every square root has two valuesI can simplify surdsI can explain what a conjugate isI can explain what a compound surd isI can explain why there's only one conjugateI can add and subtract surdsI can identify like termsI can multiply compound surds using FOILI can divide compound surds when the numerator is greater than 1
Real and Complex Numbers

I can explain factors
I can explain remainders
I can use the remainder theorem to find factors of polynomials
\bigcirc I can explain the link between factors and roots of a function
\bigcirc I can identify a quadratic equation

I can find solutions by using the quadratic formula

Rectangular Form

I can add and subtract complex numbers in rectangular form\bigcirc I can multiply complex numbers in rectangular form
O I can divide complex numbers using conjugates

Special Triangles

I can explain the difference between degrees and radians\bigcircI can convert degrees to radians and vice versa

I can explain why using radians has advantages over using degrees

I can find the equation from the roots

I can find solutions by completing the square

I can find the nature of roots using the discriminantI can find a range of numbers for where an equation has one, both, or no roots.
\bigcirc I can explain where the imaginary number comes from

O I can equate real and imaginary numbers to solve an equationI can find the complex roots of polynomials using the quadratic formula, completing the square method, or remainder theoremI can remember the six trigonometric ratios based on an equilateral triangleI can remember the three trigonometric ratios based on a right-angle triangle

Polar Form

\bigcirc I understand that complex numbers can be written in polar form, where $z=r \times$ cis θI understand that cis θ is short for $\cos \theta+i . \sin \theta$I can state the symbols for the modulus and argumentI can identify \mathbf{r} on an Argand diagram, and determine its value

I can identify $\boldsymbol{\theta}$ on an Argand diagram, and determine its valueI can express θ from an Argand diagram as an angle between -180° and $+180^{\circ}$
\bigcirc I can express a complex number in polar form using the values for r and θ

I can multiply complex numbers in polar form by multiplying the r values and adding the θ values

I can divide complex numbers in polar form by dividing the r values and subtracting the θ values

I can use De Moivre's Theorem to calculate the power of a complex number in polar form I can use De Moivre's Theorem to find the n root of a complex number in polar form I can use trigonometry to convert a complex number into rectangular form to polar formI can use trigonometry to convert a complex number into polar form to rectangular form
O I can convert a complex number into polar form to rectangular form by expanding $r \times \operatorname{cis} \theta$ into r. $\cos \theta+(r . \sin \theta)$

I can define a locus

I can use the rectangular form to split z into real and imaginary partsI understand that |x+iy| represents the modulus of the locusI can express the modulus of the locus $|x+i y|$ as: $\sqrt{ }\left(x^{2}+y^{2}\right)$I can determine the equation of a locus, where the value of the modulus is givenI can calculate the gradient and y-intercept of a straight line in the form: $y=m x+c$I can calculate the position of the centre of a circle and its radius from its equation in the form $\quad(x-a)^{2}+(y-b)^{2}=r^{2}$I can determine what kind of conic section (straight line, circle, ellipse, hyperbola or parabola) is represented by the equation of a locusI can draw the equation of a locus, where the locus represents a straight line or a circle