OIntegration Checklist

Use this alongside our Walkthrough Guides to tick off the concepts you're confident with to plan your study and find areas of improvement!

Integration

I can explain what a function isI can explain the relationship between differentiation and integration\bigcirc I can use the symbol $\int \mathrm{dx}$ and explain what $d x$ means
O I can integrate a simple function
I Ican integrate exponentials
I can integrate natural logsI can integrate trigonometry functionsI can explain what cosecant, secant, and cotangent areI can use double angle formulae to solve problems with $\cos ^{2} x$ or $\sin ^{2} x$I can use double angle formulae when there's a number in front of x, like $\cos ^{2} 3 x$I can integrate trig products using the formulas on my formula sheetI can explain why we write the constant c in integrated functionsI can find the value of the constant

Integration Rules

I can use the chain rule to integrate a functionI can integrate products using the reverse chain ruleI can integrate using substitution when a function's power is very highI can integrate products using substitutionI can integrate functions in the form $\frac{f^{\prime}(x)}{f(x)}$
I can integrate functions in the form $\frac{a x+b}{c x+d}$

Areas

I can explain what a definite integral isI can use definite integrals to find the area under a functionI can find the absolute area(area under the x-axis, which is negative)I can find the area between the curve and the y axisI can find the areas between two curves

I can subtract two functions into one to make finding the area easierI can use the trapezium rule to find the area under a curveI can explain the difference between Simpson's rule and the trapezium rule I can use Simpson's rule to find the area under a curve

Differential Equations

I can explain what proportionality is and why constants are neededI can explain what different proportions tell us about the relationship between two variablesI can write a differential equation, based on a word equation
\bigcirc I can solve a differential equation generally as a functionI can solve a differential equation specifically, as a number value

Kinematics

I can separate variables to integrate I can use A in exponential functions instead of +c if I've converted them from a differential equationI can list the types of contexts differential equations will appear inI can apply differential equations to real-life problems and talk about them, in context

I can use integration to turn a function for acceleration into velocity, and from velocity into distance

I can use kinematics in a definite integral problemI can use kinematics in a differential equation problem

