($)$ Mechanics Checklist

n

Use this alongside our Walkthrough Guides to tick off the concepts you're confident with to plan your study and find areas of improvement!

Foundational Maths

O I can label a triangle using the terms hypotenuse, adjacent and oppositeI can use trig to calculate an unknown side of a triangleI can describe what the arrow length indicates in a vector

O I can define the vertical and horizontal components of a vector diagram
\bigcirc I can write values in scientific notation

ForcesI can define a force
I know Newton's 3 laws of motion and how it relates to forces
I can explain the difference between mass and weight
I can explain a reaction force
I can define friction force and tension

O I can provide examples of fraction force and tension force
\bigcirc I can explain equilibrium in relation to forces

O I can draw a force diagram, using correct labels
I can define net force and balanced forces in relation to acceleration
I can calculate force, mass, or acceleration using $\mathrm{F}_{\text {net }}=\mathrm{ma}$I can compare the effect of balanced and unbalanced forces on the direction, velocity and acceleration of an object

Kinematics

I can state the symbol and unit of the following:Velocity
Distance
O Time
O Acceleration
I can calculate velocity, distance, time and acceleration using appropriate formulae

I can identify and use the four kinematic equations to calculate distance, time, initial velocity and final velocity

Projectile Motion

I can draw or describe the general path of projectile motion, describing the shape it formsI can link the motion of the projectile to the forces acting on itI understand that horizontal velocity stays the same during projectile motion\bigcirc I can describe the size of vertical and horizontal velocity components at the starting point, midpoint and endpoint of projectile motion
\bigcirc I can explain why the vertical velocity changes throughout projectile motion

I can calculate the initial vertical velocity, initial horizontal velocity and initial velocity of a projectile using either Pythagoras' or trig I can calculate the time it takes for the vertical velocity to become 0 I can calculate the highest point of a projectile motion path I can calculate the total journey time from the vertical velocity I can calculate the total horizontal distance of projectile motionI can calculate the position of a projectile at any point of its motion

Circular Motion

I can define centripetal force
I can explain how an object can travel at a constant speed during its circular motion despite accelerating
I can draw and label a diagram of circular motion, showing the direction of centripetal force and velocity

I understand the velocity of an object is tangential $\left(90^{\circ}\right)$ to centripetal force
I can calculate centripetal acceleration, velocity, or radius using $\mathrm{F}_{\mathrm{c}}=\frac{m v^{2}}{r}$

Torque

I can define torqueI can calculate the torque, force, or distance from the pivot point using the formula $\tau=$ FdI understand the concept of equilibrium, where upwards forces equal downwards forces, and clockwise torques equal anticlockwise torque\bigcirc I can explain the relationship between torque, the size of the force, and the distance from the pivot point

I can calculate the force required to bring objects around pivot points to equilibrium

I can use upwards or downwards forces and clockwise or anticlockwise torques to calculate the support forces in a real-world context, such as a bridge

Momentum

I can state the units and symbols for:MomentumTimeOnergy
\bigcirc Force
Acceleration due to gravity
O Work
PowerI can define momentum and calculate it using $p=m v$I understand that momentum is conserved during a collisionI can calculate the total momentum before and after a collisionI can describe the difference between an elastic and inelastic collisionI can define impulse and calculate itI can discuss how the impulse equation is useful for investigating the damage from a collision

Energy

I can calculate kinetic energy, mass, or velocity using the equation $E_{k}=1 / 2 m v^{2}$O I can calculate gravitational potential energy, mass, or height using the equation $E_{p}=$ $m g \Delta h$I can calculate the potential energy stored in a spring using $E_{p}=1 / 2 k x^{2}$
I can explain Hooke's Law
I understand why energy is lost when converted from potential to kinetic energy, and describe the type of energy that is lost

