(6) Waves Checklist

Use this alongside our Walkthrough Guides to tick off the concepts you're confident with to plan your study and find areas of improvement!

Wave Properties

I can define a waveI can define the term medium in relation to wavesI can describe mechanical waves, giving examples.O I can compare and contrast mechanical waves with electromagnetic waves
I can describe longitudinal and transverse waves, giving examples of eachI can define amplitude, wavelength, frequency, period, and normal lineI can define the terms crest and trough, and label them on the diagram of a waveI can calculate velocity, frequency, or wavelength using the equation: $v=f \lambda$.I can calculate the frequency or period using the equation: $\mathrm{f}=\frac{1}{T}$I can draw basic waves

Wave Behaviour

I can define reflection
I can draw reflection, from a plane mirror, using straight lines to represent light, and show the correct angle of reflection
I can define refraction
O I can describe the relationship between medium density and the velocity of light
I can draw a ray diagram to show how light travels into a medium of greater density

I can use Snell's Law:
$n_{1} \sin \theta_{1}=n_{2} \sin \theta_{2}$ to calculate the angle of refraction, when both refractive indices are known, or to calculate one of the refractive indices when both angles are known
O I can draw a ray diagram to show how light travels into a medium of less density I can discuss the refractive index, and what it tells us about different media

Total Internal Reflection and Interference

I can define total internal

reflection, and explain when it occurs
I can define the critical angle and calculate its value using Snell's Law

I can describe wave interference I can define node and antinodeI can explain when constructive interference occurs, and when destructive interference occurs, making reference to nodes and antinodes

I can define diffraction
O I can draw a wave diagram showing the diffraction of waves through different size gaps, or diffraction around a barrier

Mirrors

I can define the focal point and principal axis
O I can calculate the focal length, the object distance, or the image distance using the equation: $\frac{1}{F}=\frac{1}{d_{o}}+\frac{1}{d_{i}}$
\bigcirc I can calculate the magnification from the object distance and image distance using the equation: $m=$
$\frac{d_{i}}{d_{0}}=\frac{h_{i}}{h_{0}}$
O I can calculate the height of the image from the magnification and the height of the object using the equation: $m=$ $\frac{d_{i}}{d_{o}}=\frac{h_{i}}{h_{o}}$

I can explain the terms converging and diverging, in terms of light reflection, and can link these to concave and convex mirrors
I can explain why the focal length for a concave mirror is
positive, while the focal length for a convex mirror is negative
I can draw ray diagrams, using at least 2 of the 4 possible rays, to show where an object will be reflected from a concave mirror I can draw ray diagrams, using at least 2 of the 4 possible rays, to show where an object will be reflected from a convex mirrorI can explain the difference between a real and virtual image
I can discuss how real and virtual images are formed I can describe the nature (real or virtual), orientation (upright or inverted), and the size of an image (enlarged or diminished) that has been formed by a curved mirror

Lenses

I can explain the terms converging and diverging in terms of light refraction, and can link these to concave and convex lenses

I can draw ray diagrams, using at least 2 of the 4 possible rays, to show where an object will be refracted from a concave lens. I can draw ray diagrams, using at least 2 of the 4 possible rays, to show where an object will be refracted from a convex lens

I can explain why the focal length for a convex lens is positive, while the focal length for a concave lens is negative I can describe the nature (real or virtual), orientation (upright or inverted), and the size of an image (enlarged or diminished) that has been formed by a curved lens

