(Mechanical Systems Checklist

n

Use this alongside our Walkthrough Guides to tick off the concepts you're confident with to plan your study and find areas of improvement!

Circular Motion and Gravity

I can define centripetal force
I can draw and label the circular motion of an object on a diagram showing the direction of the centripetal force and the velocity
O I can discuss what happens to an object when centripetal force is removed, in terms of speed and direction
\bigcirc I can calculate the centripetal acceleration, velocity, or radius using the equation: $\mathrm{a}_{\mathrm{c}}=\frac{v^{2}}{r}$
\bigcirc I can calculate the centripetal force, mass, velocity, or radius using the equation: $\mathrm{F}_{\mathrm{c}}=\frac{m v^{2}}{r}$
I can calculate the distance travelled in one lap by calculating the perimeter of a circle
O I can describe what provides centripetal force based on a real-world example given

O I understand that the velocity of the object is at 90°, or tangential, to the centripetal force
\bigcirc I can state where on a vertical circle speed, kinetic energy and potential energy are at their maximum and minimum values
\bigcirc I can discuss the energy changes in vertical circular motion
\bigcirc I can calculate the tension force of a string at various points when string is used to swing an object in a vertical circular motion
O I can draw a free-body diagram showing the weight force and reaction force of an object on a curved bank
O I can calculate the reaction force of an object on a curved bank
\bigcirc I know how to calculate the velocity of an object to stay on a circular path on a curved bank

Translational Motion

I can define the centre of mass
\bigcirc I can calculate the position of the centre of mass with multiple objects using the formula:

$$
\mathrm{X}_{\mathrm{cm}}=\frac{\left(x_{1} m_{1}+x_{2} m_{2}+\ldots\right)}{m_{1}+m_{2}+\ldots}
$$

I can describe the path of the centre of mass before and after a collision
O I can explain the importance of an object's centre of mass when discussing how forces act on an object.
O I can calculate the force due to gravity using the formula:
$\mathrm{F}_{\mathrm{g}}=\frac{G\left(m_{1} m_{2}\right)}{d^{2}}$
I can define escape velocity and orbital velocity
O I can describe a geostationary satellite
I can discuss the relationship between distance and gravitational force, and explain how the force due to gravity on Earth changes depending on how high an object is
O I can calculate the orbital velocity of an object circling the earth

I can calculate the height for a satellite to be geostationary
\bigcirc I can state the unit and symbol of momentum

I can calculate the momentum of an object from its mass and velocity
O I can calculate the change in momentum, force or change in time from the equation: $\Delta p=F \times t$
\bigcirc I can calculate the total momentum of multiple objects before a collision

I can explain the concept of apparent weight, and compare this to weight
I can explain the difference between an elastic and an inelastic collision

O I can calculate the velocity of an object after a collision using the total momentum before and after the collision

O I can define impulse, in terms of the momentum
\bigcirc I can state if momentum is conserved during a collision
\bigcirc I can calculate the resulting velocity of their combined mass when two objects of known size and velocity collide and stick together.
I can discuss how seat belts, airbags and crumple zones in cars protect the passengers, referring to change in momentum, time and force

Rotating Systems

I can state the symbols and units used for angular position, angular velocity, angular acceleration, inertia, and momentumI can convert radians per second to revolutions per minute, and vice versaI can define inertiaI can calculate torque using the equations: $\mathrm{t}=\mathrm{F} \times \mathrm{d}$ or $\mathrm{t}=\mathrm{I} \times \alpha$ I can describe angular momentum in terms of inertia and angular velocityI can calculate the rotational kinetic energy of an objectI can explain why a solid object will have a greater rotational kinetic energy than a hollow object of the same mass, and therefore why the solid object will move fasterI can explain how angular velocity of a rotating system can be increased or decreasedI can link linear momentum with angular momentum

Oscillating Systems

I can list examples of simple harmonic motionI can describe periodic, or harmonic motionI can define the time period in simple harmonic motion, and calculate it using $T=\frac{2 \pi}{\omega}$I can calculate the time period for a pendulum using $\mathrm{T}=2 \pi \sqrt{\frac{I}{g}}$I can calculate the time period for a spring system using $T=2 \pi$ $\sqrt{\frac{m}{k}}$I can explain how the time period can be increased or decreased in simple harmonic motion (and in a pendulum or spring system)I can calculate the displacement, velocity and