(Probability Distributions Checklist

Use this alongside our Walkthrough Guides to tick off the concepts you're confident with to plan your study and find areas of improvement!

Data

I can describe the difference between discrete and continuous dataI can give examples of discrete and continuous dataI can define the expected valueI can calculate an expected value using the correct formulaI can define the difference between expected gain and expected winnings, and use them to answer context questions
Normal Distribution

I know what $\boldsymbol{\mu}, \boldsymbol{\sigma}$, and \mathbf{x} represents
I can state the values of the mean and standard deviation for a standard normal

O I can draw a diagram of the normal distribution, including a line representing the probability that needs to be calculated
\bigcirc I can calculate a normal distribution x-value, given the probability or area probability using the calculator, by inserting values for lower bound, upper bound, mean, and standard deviation.

I can convert an x-value from a normal distribution to a z-value for a standard Normal distribution, using the formula: $Z=\frac{(X-\mu)}{\sigma}$
I can use the normal distribution table to calculate the area or probability from the Z-value given

I can use the normal distribution tables to calculate the z-value from the area or probability given
\bigcirc I can calculate the mean of a normal distribution from the z-value, x-value and mean, using the formula: $Z=\frac{(X-\mu)}{\sigma}$I can calculate the standard deviation of a distribution normal distribution from the z-value, x-value and mean, using the formula: $Z=\frac{(X-\mu)}{\sigma}$
I can use the inverse normal
distribution to calculate the x-value, given the probability or area

I can discuss any assumptions that can or cannot be made in a normal distribution problemI can discuss limitations of the normal distribution that are important for the context given

Binomial Distribution

I can state the meaning of the symbols: $\mathbf{n}, \mathbf{p} / \boldsymbol{\pi}, \mathbf{x}$
O I understand that the symbols p and π are the same and both can be used in a binomial distribution
O I can use the cumulative binomial distribution to calculate the probability where x is less than or less than or equal to one value
O I can use the cumulative binomial distribution to calculate the probability where x is greater than, or greater than or equal to one value
I can use particular binomial distribution to calculate where x is equal to one value
I can determine whether to use Bcd or Bpd when solving binomial distribution problems using a graphics calculator
I can state the values of the number of trials and the probability of success
O I can state the 4 conditions that must be met for binomial
distribution to be an appropriate model

O For binomial distribution, I can calculate:

Mean using $\mu=n p$
Variance using $\sigma^{2}=n p(1-p)$

Standard deviation using $\sigma=\sqrt{ }(n p(1-p))$I can explain why a given situation can be modelled using binomial distributionI can draw a number line to show the x values that must be included in the binomial distribution calculation I can discuss any assumptions that can or cannot be made in a binomial distribution problem I can discuss limitations of the binomial distribution that are important for the context givenI can use the inverse binomial distribution to calculate the value of n when the value of $P(X$ $=0$) is given

Poisson Distribution

I can state the meaning of the symbols: $\boldsymbol{\lambda}, \mathbf{x}$
O I can state the value of the mean number of occurrences in the given interval
O I can use cumulative Poisson distribution to calculate the probability where x is greater than, or greater than or equal to one value
O I can state the 4 conditions that must be met for a Poisson distribution to be an appropriate model
I can draw a number line to show the x values that must be included in the Poisson distribution calculation
O For Poisson distribution, I can calculate:

$$
\text { Mean using } \mu=\lambda
$$

Variance using $\sigma^{2}=\lambda$
Standard deviation using $\sigma=\sqrt{ } \lambda$
I can explain the relationship between λ and time
I can calculate the value of λ depending on the time interval and can change the value of λ when the time interval changes

O I can explain why a given situation can be modelled using Poisson distribution
I can describe the features of a Poisson distribution curve
I can discuss any assumptions that can or cannot be made in a Poisson distribution problem
I can determine whether to use Pcd or Ppd when solving Poisson distribution problems using the graphics calculatorI can use particular Poisson distribution to calculate the probability where x is equal to one value
O I can use cumulative Poisson distribution to calculate the probability where x is less than or less than or equal to one value.
I can discuss limitations of the Poisson distribution that are important for the context given
O I can use inverse Poisson distribution to calculate the value of λ when the value of $P(X$ $=0$) is given

Uniform Distribution

I can describe the features of a uniform, or rectangular, distributionI can draw a diagram of the uniform distribution, including a line representing the lower bound, a line representing the upper bound, and a shaded area representing the probability that needs to be calculated
I can calculate the height of a uniform distribution by rearranging the formula for the area of a rectangle
I can state the values of the minimum, maximum, and height, or frequency

I can explain why a given situation can be modelled using a uniform distribution
I can discuss the features of a uniform distributionI can discuss any assumptions that can or cannot be made in a uniform distribution problemI can calculate the area of a rectangle using the formula: A $=$ base \times heightI can use uniform distribution to calculate the area, or probability, for an event occurringI can discuss limitations of the uniform distribution that are important for the context given

Triangular Distribution

I can describe the terms:
minimum, maximum and mode

O I can use triangular distribution to calculate the probability, or area, where x is between any smaller value of c, or between c and any greater valueI can state the meaning of the symbols, a, b, c and $f(x)$, in relation to the triangular distribution

I can identify the minimum, maximum and mode on a triangular distribution graph
\bigcirc I can calculate the mode using $\frac{2}{(b-a)}$When $\mathrm{a} \leq \mathrm{x} \leq \mathrm{c}$, I can calculate the height of the distribution using $\mathrm{f}(\mathrm{x})=\frac{2(x-a)}{(b-a)(c-a)}$
When $c \leq x \leq b$, I can calculate the height of the distribution using $\mathrm{f}(\mathrm{x})=\frac{2(b-x)}{(b-a)(b-c)}$
O I can calculate the area of a triangle using $A=1 / 2(b \times h)$

O I can use triangular distribution to calculate the probability, or area, where x lies between two values, that are not a, b and c I can use triangular distribution to calculate the value of x when the probability or area is givenI can use triangular distribution to calculate the probability, or area, where x is less than or greater than one valueI can explain why a given situation can be modelled using a triangular distribution
\bigcirc I can describe the features of a triangular distribution
I can discuss any assumptions that can or cannot be made in a triangular distribution problem
\bigcirc I can discuss limitations of the triangular distribution that are important for the context given

