Assessment Schedule – 2013

Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Assessment Criteria

Achievement	Achievement with Merit	Achievement with Excellence
<i>Demonstrate understanding</i> involves describing, identifying, naming, drawing, calculating, or giving an account of bonding, structure and properties of different substances and the energy involved in physical and chemical changes. This requires the use of chemistry vocabulary, symbols and conventions.	Demonstrate in-depth understanding involves making and explaining links between the bonding, structure and properties of different substances and the energy involved in physical and chemical changes. This requires explanations that use chemistry vocabulary, symbols and conventions.	Demonstrate comprehensive understanding involves elaborating, justifying, relating, evaluating, comparing and contrasting, or analysing links between bonding, structure and properties of different substances and the energy involved in physical and chemical changes. This requires the consistent use of chemistry vocabulary, symbols and conventions.

Evidence Statement

Q	Evidence	Achievement	Merit	Excellence
ONE (a)	Lewis diagrams shown (Appendix One).	• In (a) TWO Lewis structures correct.		
(b)	BF ₃ : trigonal planar: 120° bond angles. PF ₃ : trigonal pyramidal; ≈ / < 109.5° (107°). Shape is determined by the number of regions of electron density / electron clouds and whether they are bonding / non-bonding. BF ₃ has three regions of electron density / electron clouds around the central B atom. The regions of electrons are arranged as far apart as possible from each other / to minimise repulsion, which results in a trigonal planar arrangement with a bond angle of 120°. All three regions of electrons are bonding, so the overall shape is trigonal planar. PF ₃ has four regions of electron density / electron clouds around the central P atom. The regions of electrons make a tetrahedral arrangement with a bond angle of 109.5°. Only three regions of electrons are bonding and one is non-bonding, so the overall shape is trigonal pyramidal. <i>The non-bonding</i> <i>electrons have increased repulsion,</i> <i>therefore decreasing the bond angle</i> <i>to</i> < 109.5°	 In (b) TWO shapes correct. In (b) TWO bond angles correct. 	 In (b) the arrangement of electrons around the central atom is used to explain the shape of the molecule. In (b) the arrangement of electrons around the central atom is used to explain the bond angle. 	In (b) the arrangement of the electron density / electron clouds around the central atom is used to explain the shapes and angles of the molecules. Includes a comparison of the different shape and bond angles.

(c)(i) (c)(ii)	The NH ₃ molect The N–H bond differences in e and H. The shap trigonal pyrami H polar bonds a symmetrically a This means that cancel. This results in a polar. Polar: bent Non-polar: linea If MX ₂ is polar, the polar M–X is symmetrically a atom. There mu four regions of only two bonde shape must be b Three regions of only two bonde shape must be b Three regions of $\chi^{-}_{\delta^{-}}$ Four regions of $\chi^{-}_{\delta^{-}}$	ule is polar. is polar due to lectronegativity of N be of the molecule is dal, therefore the N ire not arranged fround the N atom. It the dipoles will not a molecule which is ar this indicates that bonds are not spread fround the central M ist be either three or negative charge: $M_{\delta^+} \times_{\delta^-}$ negative charge: $M_{\delta^+} \times_{\delta^-}$ negative charge: $M_{\delta^+} \times_{\delta^-}$ negative charge: $M_{\delta^+} \times_{\delta^-}$ polar this means that bonds are spread fround the central M ist be only two tive charge around th bonded by X r shape. negative charge: $-M_{\delta^+} - X_{\delta^-}$	 In (c) N–H polar. Predicts poly NH₃ correction one piece of supporting evidence. Predicts or possible sh MX₂. Polarity de upon the sy of the mole 	bond is blarity of ctly with of ne hape for pends ymmetry ecule.	 In (c) differ electris between the second sec	 (i) the ence in onegativitie ween N and used to in the N–H is are polar. (i) links d of charge erall cule polarity. (ii) links the metric d of polar is to the example. 	In (c)(i) the polari molecule is explai justified in terms of regions of bond po and asymmetry.	ty of ned and of the olarity cted ecules m dipoles.
NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.	la	2a	4a	5a	3m	4m	3e with minor error / omission / additional information.	3e

Appendix O)ne: Q	Question (One ((a)
-------------------	--------	------------	-------	------------

Molecule	Lewis structure					
CH4	H H H:C:H or H-C-H H H					
H ₂ O	H:Ö: or H-Ö: H H					
N_2	:N∷N: or :N≡N:					

Q	Evidence		Achievement	Merit	Excellence	
TWO (a)	Type of substance	Type of particle	Attractive forces between particles	ONE row or ONE column correct.	• Table completely correct.	
	Covalent network	Atom	Covalent (and weak intermolecular forces)	Chlorine: low melting	• Explains and links why chlorine is a gas	
	Molecular	Molecules	Weak intermolecular forces	point OR is a gas at room	and copper chloride is a solid at room	
	Ionic	Ion	Ionic bonds / electrostatic attraction	temperature AND because it has weak	temperature. Eg: Chlorine: has low melting	Contrasts with reference to bonding and structure why chlorine is a gas at
	Metal	Atom / cations and electrons	Metallic bonds / electrostatic attraction	intermolecular forces OR little energy is	gas at room temperature <u>because</u> it has	copper chloride is a solid at room temperature.
(b)(i) (b)(ii)	Chlorine is a composed of together by y The weak in require much boiling point temperature) at room temp Copper chlor is composed copper chlor is composed copper chlor these are str require cons them and me copper chlor temperature. For a substan must have cl free to move Graphite is a composed of bonded to th remaining va (ie free to m therefore the able to cond Copper is a to of copper at electrons are attracted to t Cu atoms; ie directional. For a substan needs to be s without breat	a molecular s f chlorine mo weak intermo termolecular h heat energy t is low (low); therefore c perature. ride is an ior l of a lattice o and negative r by electros se positive an rong forces, t iderable ener- elt the copper ride is a solid nce to condu harged partice a covalent ne f layers of C alence electrr ove) between ese delocalise uct electricit metallic subs oms packed to e loosely held the nuclei of e the bonding These deloca a covalent or of the solid conserve to be ma stretched or of king.	ubstance blecules held blecular forces. forces do not v to break, so the er than room hlorine is a gas tic substance. It of positive chloride ions tatic attraction nd negative ions. therefore they rgy to disrupt r chloride; hence at room ct electricity, it les which are twork solid atoms covalently tooms. The on is delocalised n layers; ed electrons are y. tance composed cogether. Valence and are the neighbouring is non- lised valence duct an electrical	 needed to turn it into a gas. Copper chloride: High melting point OR is a solid at room temperature AND because it has strong ionic bonds OR a lot of energy would be needed to change it from a solid. For something to conduct there must be free moving charged particles. Graphite conducts because it has free moving electrons Copper conducts because it has free moving electrons. For something to be made into wires it needs to be able to be stretched without breaking / ductile 	 weak intermolecular forces <u>and</u> little energy is needed to turn it into a gas Eg: CuCl₂: High melting point and is a solid at room temperature because it has strong ionic bonds and a lot of energy would be needed to change it from a solid. Explains why both graphite and copper conduct electricity. Explains why copper is ductile but graphite is not. 	Contrasts with reference to bonding and structure why both graphite and copper can conduct electricity, however only copper is ductile.

(c)	 In graphite, the attractive forces holding the layers together are very weak and are broken easily, so the layers easily slide over one another, but the attraction is not strong enough to hold the layers together and allow it to be drawn into wires or although the layers can slide due to weak forces, if graphite was to be made into a wire the very strong covalent bonds within the layers would have to be broken. Copper metal can easily be drawn into wires since, as it is stretched out, the non-directional metallic bonding holds the layers together, allowing it to be stretched without breaking. 			 Graphite cannot be stretched since weak forces are easily broken or because the very strong covalent bonds have to be broken Copper able to be stretched into wires because non directional bonding of valence electrons holds it together or because the metallic bonds can stretch without breaking. 							
	Bonds broken: Bonds formed:		Identifies bonds		• Proces	s for	Correctly calculates				
	$C-H \times 1$		C-	$Cl \times 1$	broken	and	calcula	ting $\Delta_{\rm r} H^{\circ}$	$\Delta_r H^\circ$, with units and negative sign.		
	Cl–Cl×	1	H–	$Cl \times 1$	formed	l.	correct	, however			
	414 + 24	2 = 656	324	4 + 431 = -755							
	656 kJ + (- OR		-99.0	0 kJ mol ⁻¹							
	Bonds b	roken:	Bo	nds formed:							
	$C-H \times 4$		С-	$Cl \times 1$							
	Cl–Cl×	1	C	H x 3							
			H–	$Cl \times 1$							
	1656+ 242 = 1898 324 + 1242+ 431= 1997										
	$1898 \text{ kJ} + (-1997 \text{ kJ}) = -99.0 \text{ kJ mol}^{-1}$										
N	1Ø	N1		N2	A3	A4	M5	M6	E7	E8	
No response or no relevant evidence.		1a		2a	5a	7a	3m	4m	2e	3e	

Q	Evidence	Achievement	Merit	Excellence
THREE (a)	Endothermic Gets colder The process is endothermic since the enthalpy change ($\Delta_r H^\circ$) is positive, which indicates that energy is absorbed by the system as the ammonium nitrate dissolves. Since heat energy is absorbed by the system from the surroundings (water & beaker), the water or beaker will get cooler as they lose heat energy.	 In (a) the reaction is endothermic because the value is positive OR because the ammonium nitrate is absorbing energy from the surroundings OR products have more energy than reactants. In (a) beaker gets colder as heat energy is absorbed by 	• Explains that since reaction is endothermic heat energy is absorbed by the system from the surroundings (water / beaker) so the beaker feels colder.	In (d) calculations correct with units and statement made about which iron oxide produces more heat energy. AND two bullet points from Merit.
(b)(i)	Exothermic The reaction is exothermic because the enthalpy change $(\Delta_r H^\circ)$ is negative; indicating that heat energy is produced during the reaction.	 ammonium nitrate. In (b)(i) exothermic since value is negative 		
(b)(ii)	9800 kJ / 2820 kJ mol ⁻¹ = 3.48 mol	or because glucose reacting is releasing energy OR products have less energy than reactants.		
		• In (b)(ii) calculation is correct.		
(c)(i)	Endothermic. Heat energy is needed to change the butane from a liquid to a gas; the energy is used to break the weak intermolecular forces between the butane molecules.	• In (c) the process is endothermic since energy isneeded to boil butane.	• In (c)(i) explains the use of heat energy to break the weak intermolecular forces between	
(c)(ii)	$n(C_4H_{10}) = 100 \text{ g} / 58.1 \text{ g mol}^{-1}$ = 1.7212 mol -4960 kJ / 1.7212 mol = -2882 kJ mol^{-1}	• In (c)(ii) one step correct in the calculation.	 butane molecules. In (c)(ii) calculation is correct. 	
(d)	$n(Fe) = 2000 \text{ g} / 55.9 \text{ g mol}^{-1} = 35.78 \text{ mol}$	• In (d) one step	• In (d) two steps	
	Fe ₃ O ₄ : 3348 kJ / 9 = 372 kJ mol ⁻¹ 372 kJ mol ⁻¹ × 35.78 mol = 13 310.16 kJ	correct.	correct	
	$= (-)1.33 \times 10^{-1} \text{ kJ}$			

	Fe ₂ O ₃ : 851 kJ / 2 = 425.5 kJ mo = $(-)1.52 \times$ Therefore F energy when	425.5 kJ mol ⁻¹ × 35.78 m 10^{4} kJ 10^{4} kJ $e_{2}O_{3}$ produces n 2 kg iron is s	-1 ol = 15 224.4 l s more heat formed.	¢J				
NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.	la	2a	4a	5a	2m	3m	e with minor error / incorrect unit / only 1m.	e

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 – 7	8 – 13	14 – 18	19 – 24