Assessment Schedule – 2014

Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Evidence Statement

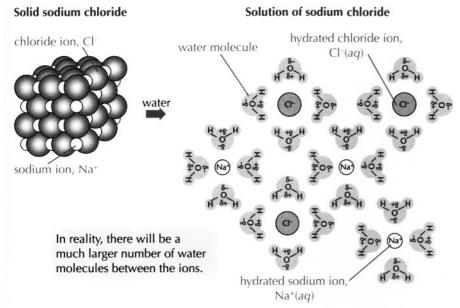
Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
ONE (a)	Lewis structures shown (see Appendix One).	• Two Lewis structures correct.		
(b) (i) (ii)	The bond angle x is approx. 120° and bond angle y is approx. 109.5°. The B atom has three regions of electron density around it. These are all bonding regions. The regions of electron density are arranged to minimise repulsion / are arranged as far apart as possible from each other. (This is why the bond angle is 120°.) The O atom has four regions of electron density around it. The regions of electron density are arranged to minimise repulsion / are arranged as far apart as possible from each other in a tetrahedral arrangement / two of these are bonding (and two are non-bonding). This is why the bond angle is 109.5°.	 One bond angle correct. States the number of regions of electron density around the B atom or the O atom. 	• For ONE atom, the (stated) number of regions of electron density are arranged to minimise repulsion / are arranged as far as possible linked to the bond angle.	• The arrangement of the electron density around the central atoms is used to justify the shapes and bond angles for both molecules.
(c)	SO_2 molecule is polar. CO_2 molecule is non-polar. The S–O / S=O bond is polar due to the difference in electronegativity between S and O atoms. The bonds are arranged asymmetrically in a bent shape around the central S atom; therefore the (bond) dipoles do not cancel and the molecule is polar. The C=O bond is polar due to the difference in electronegativity between C and O atoms. The bonds are arranged symmetrically in a linear shape around the central C atom; therefore the (bond) dipoles cancel and the molecule is non- polar.	 One bond correctly identified as being polar. OR Atoms have different electronegativities. 	 Explains polar bonds is due to the difference in electronegativity between S and O (atoms) or C and O (atoms). OR Bond dipoles cancelling or not cancelling linked to the overall molecule polarity of either SO₂ or CO₂ molecule. 	• The polarity of both molecules is justified with reference to the polarity of the bonds, the shape and the polarity of the molecule.

(d)	$\Delta_r H^0$ = \sum (bonds broken) - \sum (bonds formed) Bonds broken H-H = 436 $\frac{1}{2} \times O=O = \frac{1}{2} \times 498$ Total = 685 kJ mol ⁻¹	 Identifies bonds broken and bonds formed. Bonds broken = 685 kJ mol⁻¹. 	• Correct process for calculating bond enthalpy, with one error.	• Correctly calculates the bond enthalpy of O–H.
	Bonds formed $2 \times O-H$ \sum (bonds formed) $= \sum$ (bonds broken) $- \Delta_r H^0$ = 685 - (-242) $= 927 \text{ kJ mol}^{-1}$ $2 \times O-H = 927 \text{ kJ mol}^{-1}$ $O-H = 464 (463.5) \text{ kJ mol}^{-1}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.	la	2a	3a	4a	2m	3m	2e	3e

Appendix One: Question One (a)

HCN
$$CH_2Br_2$$
 AsH₃
 $H - C \equiv N$: $\ddot{B}r - C - H$ $H - \ddot{A}s - H$
 Br : H


Q		Evidend	ce	Achievement	Achievement with Merit	Achievement with Excellence
TWO (a)	Type of substance	Type of particle	Attractive forces between particles	ONE row or one column correct.		
	Metallic	Atoms / cations and electrons	Metallic bonds / electrostatic attraction between positive ion (cation) and electron			
	Molecular	Molecule s	Intermolecular forces			
(b)	Graphene has strong covalent bonds. Because the covalent bonds are strong / there are a large number of covalent bonds, it requires a lot of energy to break these bonds, and therefore the melting point is high. Each carbon atom is bonded to only three other carbon atoms. Therefore each carbon atom has free / delocalised /valence electron(s), to conduct electricity.			 Graphene has strong covalent bonds. Graphene has delocalised electron(s). 	• Explains why graphene has ahigh melting point OR conducts electricity, linked to structure and bonding.	• Justifies both properties of graphene in terms of structure and bonding.
(c)	Magnesium atoms are held together in a 3–D lattice by metallic bonding in which valence electrons are attracted to the nuclei of neighbouring atoms. Iodine molecules are held together by weak intermolecular forces. Ductility The attraction of the Mg atoms for the valence electrons is not in any particular direction; therefore Mg atoms can move past one another without disrupting the metallic bonding, therefore Mg is ductile. The attractions between iodine molecules are directional. If pressure is applied the repulsion between like-charged ions will break the solid, therefore I ₂ is not ductile. Dissolving in cyclohexane Magnesium does not dissolve in cyclohexane because cyclohexane		 For magnesium OR iodine, reason for ductility given. For magnesium OR iodine, reason for solubility given. For magnesium OR iodine, reason for electrical conductivity given. 	 Links structure and bonding in magnesium to TWO of its properties. Links structure and bonding in iodine to TWO of its properties. 	 Explains properties of magnesium by linking structure and bonding to all three properties. Explains properties of iodine by linking structure and bonding to all three properties. 	
	molecules a magnesium Iodine is so molecule. T	re not attract atoms in the	ed to the metallic lattice. ne is a non-polar lecules and			

intermolecular attractions. Electrical conductivity
Valence electrons of Mg atoms are free to move throughout the structure. This means that magnesium can conduct electricity.
Iodine does not conduct electricity as it does not contain delocalised electrons.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.	1a	2a	3a	4a	2m	3m	2e	3e

Q		Evidence		A	Achievement	Achievemen Merit			ievement with Excellence		
THREE (a)(i) (ii)	Exothermic, as which shows en Exothermic, we attractions form molecules, this	nergy is being eak intermolec n between the	released. cular water	be be • Ez be ar	cothermic cause energy is ing released. cothermic cause bonds e being formed, leasing energy.						
(b)	Solubility When sodium of water the attract water molecule the salt are rep the water mole negative charge water molecule positive Na ⁺ io hydrogen ends attracted to the See Appendix annotated diage	tions between a and between acced by attraction cules and the i es on the oxyges are attracted ns, and the po- of the water n negative Cl ⁻ i Two for an ex-	the polar the ions in tions betwee ons. The en ends of to the sitive nolecules an ons.	h een the	NaCl is ionic / Na ⁺ and Cl ⁻ H_2O with δ + and δ				• Solubility of NaCl explained, supported by annotated diagram.		
(c)	$n(CH_{3}OH) = m / M = 345 / 32 = 10.78 mol$ $n(C_{2}H_{5}OH) = m / M = 345 / 46 = 7.50 mol$ 2 mol CH ₃ OH release 1 450 kJ of energy 1 mol CH ₃ OH releases 725 kJ of energy 10.78 mol CH ₃ OH releases 725 kJ × 10.78 = 7 816 kJ of energy 1 mol C ₂ H ₅ OH releases 1 370 kJ of energy 7.5 mol C ₂ H ₅ OH releases 1 370 kJ × 7.5 = 10 275 kJ of energy Therefore C ₂ H ₅ OH releases more energy when 345 g of fuel are combusted.		$\begin{array}{c c} \text{nol} & \text{Cl} \\ \text{C}_{2} \\ \text{Sy} \\ \text{V} \\ \text{Figure} \\ \text{Figure} \\ \text{Figure} \\ \text{Symmetry} \\ \text{Cl} \\ \text{C}_{2} \\ \text{Cl} \\ \text{C}_{3} \\ \text{Cl} \\ \text{C}_{4} \\ \text{Cl} \\ \text{C}_{5} \\ \text$	mount of H ₃ OH or H ₅ OH correct. hergy released r one mol H ₃ OH or H ₅ OH correct.	• TWO steps calculation correct for CH ₃ OH and C ₂ H ₅ OH, we conclusion	both d vith	of co	stifies choice fuel with rrect lculations and it.			
NØ	N1	N2	A3	A4	M5	M6	E7	7	E8		
No response or no relevant evidence.	la	2a	3a	4a	2m with one error in (b) or (c)	2m	2e w one e in (b) or	rror	2e		

Appendix Two: Question Three (b)

Suzanne Boniface, ESA Study Guide Level 2 Chemistry, page 115 (Auckland: ESA Publications (NZ) Ltd, 2012), p 115.

Cut Scores

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence	
Score range	0 – 7	8 – 13	14 – 18	19 – 24	