Assessment Schedule – 2019

Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Evidence Statement

Q	Evidence A				Achievement	Merit	Excellence
ONE (a)	Solid	Type of solid	Type of particle	Attractive forces between particles	Two rows or two columns correct.		
	Na(s) (sodium)	metal / metallic	atoms /cations (or metal nuclei) in sea of delocalised electrons	metallic bond			
	NaI(s) (sodium iodide)	ionic	ions	ionic bond / electrostatic attraction between (oppositely charged) ions			
	I ₂ (s) (iodine)	(covalent) molecular	molecules	(weak) intermolecular (forces)			
(b)	Sodium is a metallic solid made up of atoms in 3D lattice held together by non-directional metallic bonds (or cations non-directionally electrostatically attracted to a surrounding sea of electrons). When a force (or pressure) is applied, the atoms / layers can move without breaking / disrupting these non-directional bonds; thus the structure can change shape. NaI is made up of alternating positive ions / Na ⁺ ions, and negative ions / I ⁻ ions, ionically bonded in a 3D lattice. NaI is not malleable because if pressure is applied to an ionic lattice, it forces ions with the same charge next to each other; they repel each other and break the structure.			Describes structure of sodium. OR Recognises metallic bonding as non-directional. Describes structure of sodium iodide. OR Describes ionic bonding is directional.	 Describes malleability and Links this to non- directional metallic bonding of sodium. Describes brittleness of sodium iodide and links it to directional ionic bonding / repulsion of like charged ions. 	Comprehensively explains malleability of sodium and brittleness of sodium iodide.	

(c	Iodine is a non-polar (covalent) molecular substance made up of I ₂ molecules held together by weak intermolecular forces. Iodine is soluble in cyclohexane, but does not easily dissolve in water. For iodine in water, the iodine-water attractions are not strong enough to overcome both the iodine-iodine / solute-solute and the strong water-water / solvent-solvent attractions. For iodine in cyclohexane, the iodine-cyclohexane attractions are strong enough to overcome iodine-iodine / solute-solute and cyclohexane-cyclohexane / solvent-solvent attractions because all attractive forces are similar (nonpolar).	 Recognises I₂ as a non-polar molecule. Identifies iodine as (more) soluble in cyclohexane and insoluble/less soluble in water. 	Links attractions (or lack of) of water OR cyclohexane for non-polar iodine to solubility.	Comprehensively explains iodine's solubility in cyclohexane and insolubility (low solubility) in water linking polarity, strength of attraction and overcoming / not overcoming existing bonding within the solvent or solid.
(d	The melting of ice is endothermic, as (intermolecular) bonds are being broken as water changes from solid to liquid. This requires energy to be absorbed from the surroundings/the drink. This causes the temperature of the drink to decrease.	Identifies the melting of ice is endothermic / absorbs or requires energy / breaks bonds.	Links bond breaking to energy being absorbed from the surroundings / drink / environment.	Full explanation that links to the cooling of the drink.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	2m	3m	2e with up to one minor error/omission	3e with up to one minor error/omission

Q		Evi	dence		Achievement	Merit	Excellence	
TWO (a)(i)	Molecule	CH ₄	NCl ₃	OF ₂	Two Lewis structures correct.			
(4)(1)	Lewis Structure	H H-C-H H	: CI - N - CI: : CI - N - CI:	, F F.	OR Two shapes correct.			
	Name of Shape	tetrahedral	trigonal pyramidal	bent / v-shaped / angular	• Identifies the 4			
(ii)	Bond angle is determined atom, which are arrang separation. All molecules have 4 central atom which are geometry with a bond	ged into a position to electron density regionance with maximum	minimise repulsion by ons / areas of negative of separation into a tetra	having maximum	regions of negative charge for each molecule. OR Identifies the bonding and non-	Links number of areas of negative charge (including bonding / nonbonding) around the central atom to the shape of TWO molecules using minimise repulsion / maximum	Justifies the shape of all molecules by referring to all factors that influence shape and bond angle.	
	In CH ₄ all of the electric tetrahedral. In NCl ₃ three of the electric shape of the molecule	on pairs are bonded,	and so the shape of the		bonding pairs for one molecule.Recognises that electrons density regions are arranged	separation. OR Links four regions on the central atom for two or more		
	In OF ₂ , due to the presbonding regions) on the / angular.				in a position of maximum separation / minimal repulsion.	molecules to a bond angle of 109.5° using minimise repulsion / maximum separation.		
(b)(i)	CHCl ₃ is polar. NH ₃ is polar.				Identifies polarity of both molecules.			
(ii)	In CHCl ₃ , there are two types of bond, C–H and C–Cl, each polar, due to the difference in electronegativity between C and H and C and Cl atoms. These dipoles have different polarities / sizes as H and Cl have different electronegativities. (Despite the tetrahedral arrangement appearing symmetrical) the different (sized) bond dipoles do not cancel each other out, so CHCl ₃ is polar. In NH ₃ , the three N–H bonds are polar, i.e. have a dipole, due to the difference in electronegativity between N and H atoms. These (equally sized) dipoles are arranged in a non-symmetrical trigonal pyramidal shape, resulting in the bond dipoles not cancelling each other out, so NH ₃ is polar.				Identifies bonded atoms have different electronegativity (values).	Links bond polarity to electronegativity differences between bonded atoms for all bonds in one molecule. OR Uses lack of symmetry for NH ₃ OR differing bond dipoles for CHCl ₃ to link molecule polarity to dipoles not cancelling in one molecule.	• Justifies polarity of both molecules by referring to differences in electronegativity, dipoles, and nonsymmetrical arrangement of NH ₃ dipoles.	

(c)	Bond breaking $2 \times C - C = 348 \times 2 = 696$ $8 \times C - H = 413 \times 8 = 3304$ $5 \times O = O = 495 \times 5 = 2475$ Total = 6475 Bond making $8 \times O - H = 463 \times 8 = 3704$ $6 \times C = O = 6x$ $\Delta_t H = \Sigma Bond energies (bonds broken) - \Sigma Bond energies (bonds formed) 6475 - 3704 - 6x = -2056 \text{ kJ mol}^{-1} 6x = +2056 + 6475 - 3704 = 4827 x = 805 \text{ kJ mol}^{-1}$	Correctly calculates total bonds broken. OR Correctly identifies bonds made in a formula.	Correct process with minor error / omission.	Correct answer with unit.
-----	--	---	--	---------------------------

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	la	2a	3a	4a	2m	3m	2e	3e

Q	Evidence	Achievement	Merit	Excellence
THREE (a)(i) (ii)	Exothermic as $\Delta_r H$ is negative. To be able to conduct electricity, there needs to be mobile/free moving charged particles. Graphite, $C(s)$, is an extended covalent network solid. Each carbon atom is covalently bonded to 3 other carbon atoms in hexagonal layers. This leaves one delocalised electron per carbon atom that is mobile and able to carry a charge, so graphite conducts electricity. Carbon dioxide is a covalent molecule. The molecules are held together by weak intermolecular forces, so it is a gas at room temperature. There are no free moving ions or electrons in their structure. Therefore, it can't conduct electricity.	 Correct term with reason in (i). accept energy/heat is lost OR ΔH/enthalpy change is negative. Recognises mobile charged particles needed for conductivity. OR Identifies graphite is a covalent network made of atoms and CO₂(g) consists of molecules. 	• Links 2D network/layered covalent network structure of graphite to free moving electrons which conduct electricity OR molecules of CO ₂ to being uncharged / not having a free moving charged particle and therefore not conducting electricity.	Justifies the conductivity of graphite and carbon dioxide in terms of structure and bonding providing / not providing free moving charged particles.
(b)(i)	$n(O_2(g)) = \frac{1804.5}{1203} = 1.5 \text{ moles}$ $m = n \times M = 1.5 \times 32 = 48.0 \text{ g}$	ONE step of calculation correct.	Correct answer.	BOTH correct answers with units.
(ii)	$n = \frac{m}{M} = \frac{100}{40.3} = 2.48$ Energy = $\Delta_r H \times n = \frac{-1203}{2} \times 2.48 = -1492.5 \text{ kJ} / -1493 \text{ kJ}$ -1490 kJ (3 sf) (either positive or negative values accepted)	ONE step of calculation correct.	Correct answer.	

(c)	$65000 \times 60 = 3900000\mathrm{g}$ $n(\mathrm{Al}) = \frac{3900000}{27} = 144444\mathrm{moles}$	ONE step of process correct.	Process correct with minor error.	• Calculates energy with units (kJ or kJ h ⁻¹) and 3
	$n(AI) = \frac{1444444}{27} = 1444444 \text{ moles}$ $\Delta_r H = \frac{1444444}{4} \times 3350$			sf.
	$= 121000000\text{kJ} = 1.21 \times 10^8\text{kJ (rounded to 3sf)}$			
	OR $\frac{65000}{27}$ = 2407 moles			
	$\Delta_{\rm r} H = \frac{2407}{4} \times 3350 = 2015862\text{kJ} \times 60$ $= 121000000\text{kJ} = 1.21 \times 10^8\text{kJ (rounded to 3sf)}$			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	2m	3m	2e	3e

Cut Scores

Not Achieved Achievement		Achievement with Merit	Achievement with Excellence	
0 – 7	8 – 13	14 – 18	19 – 24	