Assessment Schedule – 2020

Chemistry: Demonstrate understanding of bonding, structure, properties and energy changes (91164)

Evidence Satement

Q			Evidence		Achievement	Merit	Excellence	
ONE (a)	Solid Type of solid Type of particle Attractive forces between the particles		Attractive forces between the particles	• TWO rows or TWO columns correct.	• Correct table.			
	Silicon dioxide SiO ₂	Covalent network	Atoms	Covalent bonds				
	Chlorine Cl ₂	Molecular	Molecule	Intermolecular forces				
	Potassium chloride KCl	Ionic	Ions	Ionic bond				
(b)	free to move. Silicon dioxid silicon atoms of arrangement). particles free t Potassium chlo when solid bed lattice structur the ions break.	e is a covalent ne covalently bonde In both the solid o move, and so s oride is an ionic cause the ions (c e and unable to p	etwork substa ed to oxygen I and liquid s silica is not a compound th harged partic move. When free to move	ence of charged particles that are ance made up of a 3-D lattice of atoms (in a tetrahedral tates, there are no charged ble to conduct electricity. hat cannot conduct electricity eles) are fixed in place in a 3-D molten, the ionic bonds between . With charged particles / ions eity.	 Identifies requirement for electrical conductivity and recognises absence or presence of charged particles in one substance. Describes the structure of one substance. 	• Explains conductivity by linking particles, and structures AND bonding to the conductivity of ONE of the compounds.	• Justifies conductivity by relating particles, structures, and bonding to the conductivity of both compounds in all states.	

(c)	Potassium chloride is ionic and when it dissolves in water, it separates into its ions. The negative poles of the water molecules are attracted to the positive K ⁺ ions, and the positive poles of the water molecules are attracted to the negative Cl ⁻ ions. This causes the ions to be surrounded by water molecules, and the solid dissolves. This solid is soluble because the force of attraction between the ions and water is strong enough to overcome the ionic bonds in the lattice and the force of attraction between water molecules. The non-polar chlorine molecules are not able to attract the polar water molecules with sufficient strength to overcome the solute / solute and solute / solvent attractions and so chlorine is only slightly soluble in water.	 Identifies attractions are needed between water and the substance (KCl) for it to be soluble. Identifies that chlorine is non-polar and is therefore not attracted to water. 	• Links relative strengths of attractions of the substance to water for the solubility of ONE of the substances.	 Justifies solubility by linking particles, structure, and bonding for both KCl and Cl₂ using a diagram to illustrate answer.
	https://pressbooks-dev.oer.hawaii.edu/chemistry/chapter/electrolytes/			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	2m	3m	2e (minor error)	2e

NCEA Level 2 Chemistry (91164) 2020 — page 3 of 6

Q		Ev	idence		Achievement	Merit	Excellence
TWO (a)	Molecule Lewis Structure Name of Shape	CS_2 $S=C=S$	NOCI	CH_2F_2 $\vdots F:$ $H - C - F:$ H H H H	• TWO Lewis structures correct. OR TWO shapes correct. <i>(Straight OK for linear. V-shaped OK for bent.)</i>		
(b)	CH ₂ O has three electron electron clouds maxim geometry with a 120° trigonal planar. NF ₃ has four regions of maximise separation to bond angle. Three of t molecular shape is trig	hise separation to min bond angle. All region of negative charge arou o minimise repulsion, he regions are bonded	imise repulsion, they t ns are bonded and so t und its central atom. A they take a tetrahedra	 Identifies the numbers of electron clouds / areas of negative charge for ONE molecule. OR Identifies non-bonding AND bonding pairs of electrons for ONE molecule. 	• Links areas of negative charge around the central atom minimising repulsion to bond angles for ONE molecule.	• Justifies bond angle and shapes of BOTH molecules by referring to electron repulsion, areas of negative charge and bonding AND non-bonding electron pairs.	
(c)(i) (ii)	is not cancelled. If ZX ₂ is non-polar, th	es between Z and X) a e bent shape. It is a po is means that the pola m in a linear shape. The	re not arranged symmolar molecule because r Z-X bonds are arran	etrically around the the effect of the dipoles	 Predicts one possible shape for ZX₂ for one polarity. Polarity depends upon the symmetry of the molecule. 	• Links the arrangement of polar bonds to the shape and symmetry for one polarity.	• Justifies the predicted shapes of the possible molecules of ZX ₂ .
(d)	$n = \frac{740}{296} = 2.5$ moles $m(S) = n \times M$ $= 2.5 \times 32.1$ = 80.3 g (= 81.2 g if no early reference)	ounding)			• ONE step of process correct.	• Correct answer.	

NCEA Level 2 Chemistry (91164) 2020 — page 4 of 6

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	1a	2a	3a	4a	2m	3m	2e (minor error)	2e

Q	Evidence	Achievement	Merit	Excellence
THREE (a)(i) (ii)	Exothermic. Because energy is released / the enthalpy change is negative / products have less energy $H_{reactants}$ $H_{reactants}$ $A_r H < 0.$ OR $\Delta_r H < 0.$ OR $\Delta_r H is negative.$ OR Energy is reduced. $H_{products}$	 Reaction type correct with reason. Diagram correct shape with reactants and products labelled. 	• Diagram correctly drawn and enthalpy change, reactants and products correctly labelled.	
	reaction proceeds			
(b)	The state change from liquid to gas is endothermic because energy is absorbed to break the attractive forces between the molecules.	• Identifies endothermic.	• Links absorption of energy (or heat) / taken in to breaking the attractive forces (or bonds) and, in turn, to endothermic. (Must be clear that forces between ethanol molecules are broken, not covalent bonds.)	

(c)	Bonds broken		Bonds mad	e	• Identifies the b	1	• Calculates enthalpy with
	$\mathbf{C} = \mathbf{C}$	614	C - C	346	broken or bond	ls made. ONE error.	correct unit.
	Cl - Cl	242	C - Cl	2x			
	Total	856		<u> </u>			
	Energy = bon -148 = 856 - 2x = 658 x = 329 kJ mo		onds made				
(d)	(d) $n(\text{ethanol}) = \frac{1500}{46} = 32.61 \text{ moles}$ $\frac{40\ 600}{32.61} = 1245 \text{ kJ mol}^{-1}$ Since it is a fuel and is exothermic, it needs to be $-1245 \text{ kJ mol}^{-1} / -1250 \text{ kJ mol}^{-1}$.					 s) of Process with ONE minor error / correct answer, but positive ΔH or no units. 	• Correct answer with correct sign, units and significant figures.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	la	2a	3a	4a	2m	3m	2e	2e +1m

Cut Scores

Not Achieved Achievement		Achievement with Merit	Achievement with Excellence	
0 – 7	8-13	14 – 18	19 – 24	