Assessment Schedule – 2014

Chemistry: Demonstrate understanding of the properties of selected organic compounds (91165)

Evidence Statement

Q	Evidence	Achievement	Achievement with Merit	Achievement with Excellence
ONE (a)	Primary: $CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - OH$ Secondary: $CH_3 - CH_2 - CH_2 - CH - CH_3$ I OH Tertiary: OH $CH_3 - CH_2 - CH_2 - CH_3$ OH $CH_3 - CH_2 - CH_2 - CH_3$ I $CH_3 - CH_3 - CH_2 - CH_3$ I $CH_3 - CH_3 - CH_3 - CH_3$ $CH_3 - CH_3 - CH_3 - CH_3 - CH_3$ $CH_3 - CH_3 - CH_3 - CH_3 - CH_3 - CH_3$ $CH_3 - CH_3 - $	• Draws TWO alcohols correctly.		
(b)(i) (ii)	$CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - OH$ $CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - CH_{2}$ I OH OH	 Draws the primary alcohol that is oxidised. Draws the product of the reaction. 		

(c)	 All three reactions are substitution reactions. In all three reactions an atom or group of atoms is being replaced with another atom or group of atoms. In Reaction One; a Br atom replaces an H atom. UV light is necessary. In Reaction Two; a Cl atom replaces the OH group. No conditions are required. In Reaction Three; the Cl atom is replaced by NH₂. No conditions are required. Two layers form in Reaction One as hexane is non-polar and the product (bromohexane) is effectively also non-polar. The water from the bromine water is polar and therefore the non-polar organic reactant and product will not dissolve in the water; because of this, two layers form as this polar and non-polar layer do not mix. 			 States the substitute States the Reaction 	 States that all reactions are substitution reactions. States the condition required for Reaction One. 			bstitution reactions in oms or groups of g replaced.	 Compares and reactions by f why all three substitution re reasons invol groups of ator 	• Compares and contrasts the reactions by fully explaining why all three reactions are substitution reactions with reasons involving the atoms or groups of atoms.	
				 States that water or Br₂ (<i>aq</i>) is polar OR Some organic compounds are non-polar. 		 Explains why two layers form by linking the following: water is polar and the bromohexane / hexane is non-polar OR Polar and non-polar compounds do not dissolve in each other. 		 Explains fully why two layers form by linking the following: water is polar and the bromohexane / hexane is nonpolar AND Polar and non-polar compounds do not dissolve in each other. 			
NØ	Ď	N1	N2		A3	A4		M5	M6	E7	E8
No respon relevant e	se or no vidence	la	2a		3a	5a		lm	2m	1e	2e

Question Two	Evidence	Evidence Achievement		Excellence
(a)	$CH_{3} - CH_{2} - C \equiv CH$ $CH_{3} - CH_{2} - CH_{2} - CH_{2} - CH_{2} - OH$ $CH_{3} - CH_{2} - CH_{2} - CH_{2} - OH$ CI CI	ONE structure . AND TWO names correct.		
	3-methylhexanoic acid 2,4-dichlorohex-3-ene			
(b)	$\begin{array}{cccc} H & H & C_2H_5 & H \\ C = C & C = C \\ C_2H_5 & CH_3 & H & CH_3 \\ cis & trans \end{array}$	• Draws the <i>cis</i> and <i>trans</i> molecules correctly.		
	For <i>cis</i> and <i>trans</i> isomers to occur a carbon-carbon double bond must be present as this prevents any rotation about this bond, and the atoms or groups of atoms attached to the two carbon atoms are therefore fixed in position. This means that molecule C cannot have <i>cis</i> and <i>trans</i> isomers as it does not have a double bond.	 States a double bond required for <i>cis</i> and <i>trans</i> isomerism. OR cannot be C as it has no double bond. 	 Explains that a double bond is required to <i>prevent free rotation</i> and therefore it cannot be molecule C as it has no carbon- carbon double bond. OR 	 Compares and contrasts the structures by Explaining that a carbon – carbon double bond is required to prevent free rotation, and therefore it cannot be molecule
	For compound B one of the carbon atoms in the double bond has two of the same atom attached to it (two H's). Therefore it cannot have <i>cis</i> and <i>trans</i> isomers because if these two H atoms swapped position it would still be the same molecule. Therefore only compound A can have <i>cis</i> and <i>trans</i> isomers as it does have a double bond preventing free rotation, and it does not have one of the carbons in the double bond with two of the same atom or groups of atoms attached to it.	• States it cannot be B as one of the carbons in the double bond has 2 of the same atoms attached to it.	In compound B , one of the carbon atoms in the double bond has two hydrogen atoms attached to it.	C as it has no carbon-carbon double bond. AND In compound B one of the carbon atoms in the double bond has two hydrogen atoms attached to it.

No respo	lØ onse or no	N1	N2		A3	A4		M5	M6	E7	E8 2e
(ii)	CH ₃ – CH ₂ When prop base reaction carbon diox propanoic a When prop reactions on accept prot sulfuric aci amine to fo When prop occurs; in t group from The reaction an eliminat C1, and a h the organic C2, with th	$CH_3 - CH_2 - CH_2 - \overset{n}{{{}{}{}{}{}{\overset$		 States T reaction OR States a with a s 	HREE correct types correct type of reacting upporting reason.	of	 Full explain reactions. OR Identifies A TWO differ 	ns one of the acid-bas ND partially explain rent types of reaction	 Compares and c reactions by: Fully explaini base reactions AND Fully explaini reaction. AND Fully explaini reaction. 	contrasts the ing one of the acid- ing the substitution ing the elimination	
(c)(i)	CH, - CH,	,— C – O •Na			• Has one	product correct for					

Question Three	Evidence	Achievement	Merit	Excellence
(a)(i)	It is an addition reaction because the double bond is breaking and an H and a Cl are being added to each of the carbons that were in the double bond.	• Recognises that atoms are being added across the double bond.	• Because the double bond is breaking and an H and a Cl are being added to each of the carbons that were in the double bond.	
(ii)	It is the major product because the hydrogen atom from HCl more often adds onto the carbon atom in the double bond which already contains the most hydrogen atoms; in this case, C1. Therefore the Cl atom from the HCl joins onto the carbon atom in the double bond which had the least number of hydrogen atoms; in this case, C2.	• States Markovnikov's rule.	• Explains why the major product forms in Reaction 1.	
(b)(i)	It is an elimination reaction because two atoms are being removed from the molecule and a double bond is being formed between the carbon atoms from which the atoms have been removed.	• Recognises that atoms are being removed in Reaction 2.	• Explains that two atoms are being removed from the molecule and a double bond is being formed between the carbon atoms from which the atoms have been removed.	
(ii)	$CH_3 - CH_2 - CH_2 - CH = CH_2$	• Correctly draws the product for Reaction 4.		
(c)(i)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	• Draws TWO repeating units for the polymer formed in Reaction 5.		
	$\begin{array}{c c} - \operatorname{CH} & - \operatorname{CH}_2 & - \operatorname{CH} & - \operatorname{CH}_2 - \\ & \\ \mathrm{C_3H_7} & \mathrm{C_3H_7} \end{array}$			

(ii)	The molecu polymers and different. OR States repeat Addition pot the carbon and adjacent mod In Reaction one hydrogen and double bond In Reaction position (the its repeating attached, ard a propyl group	alar formulae of the tree the same, but the same, but the same, but the sating units are structure of the sating units are structure of the satisfiest of th	wo repeating units of tructural formulae are aral isomers. when the C=C breaks bond join to each othe chains. ed will have a carbon up, and a carbon with its repeating unit, due sition. bond is in a different olymer formed will have with 2 hydrogen attach	both and er from with one e to the ave as as aed and	 Recogni of doubl structure OR States th structura similar. 	ises different position le bonds within the es of Reactions 3 & 5 at the monomers are il isomers or somethi	ns 5. ng	• Explains tha located in di results in tw	at the double bond ifferent positions 70 different polymers	• Compares and polymers.	d contrasts the two
Ν	Ø	N1	N2		A3	A4		M5	M6	E7	E8
No respo relevant	nse or no evidence	la	2a		3a	5a		3m	4m	le with minor error / omission.	1e

Cut Scores

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence	
Score range	0 – 7	8 – 14	15 – 18	19 – 24	