Assessment Schedule – 2012 ## Chemistry: Demonstrate understanding of chemical reactivity (91166) ## **Assessment Criteria** | Achievement | Achievement with Merit | Achievement with Excellence | |--|--|---| | Demonstrate understanding involves describing, identifying, naming, drawing, calculating, or giving an account of chemical reactivity. This requires the use of chemistry vocabulary, symbols and conventions. | Demonstrate in-depth understanding involves explaining chemical reactivity. This requires explanations that use chemistry vocabulary, symbols and conventions. | Demonstrate comprehensive understanding involves elaborating, justifying, relating, evaluating, comparing and contrasting, or analysing chemical reactivity. This requires the consistent use of chemistry vocabulary, symbols and conventions. | | One | Expected | d coverage | | | Achiev | vement | Meri | it | | | Excellence | | |------|--|--|---|---------|--|----------|---|---|---------|---------|---|---| | (a) | reactan | se concentra
it.
se temperatu | | | • One | correct. | | | | | | | | (b) | Concentre decreased of reaction This mean particles collision Experime Tempera of reaction This mean The particles in the particles of the particles of the particles as the particles as the particles of pa | nns there are apper unit volustrate decreased and 1 ture is increased in increases. The state of o | reased the rate fewer reactan me so the es. sed, so the ra ore average e moving faste ease in the | t teer. | Factor and reaction rate decreases. Fewer reactant particles per unit volume OR collision rate decreases. Factor and reaction rate increase. Particles moving faster OR more kinetic energy. Collisions more effective OR easier to overcome activation energy. | | rate AN Fev par vol OR Co dec Fac rate AN The mo and The inc free bet OR Par eff par ene the | e dec ND E wer inticle lumes a sublision creas ctor is e incore k d are ere vereas equer twee a tricle ergy | on rate | er. ons | moving fas | on rate and fewer articles per the AND atte sis: Factor on rate and the ave more orgy and are ster. There increase in acy of between ND aso collide tively as es have gy to the energy for | | - | NØ N1 N2 | | | A3 A4 | | M5 | | M6 | | E7 | E8 | | | no r | sponse or
elevant
dence. | 1a | 2a | | 3a | 4a | 1m | | 2m | erro | 2e
vith minor
or / omission
additional
irrelevant
nformation | 2e | | Two | Expected | l coverage | | | | Achievement | Merit | | Excell | ence | |----------------|--|--|---|--|---------------------------------------|------------------------------------|--|---|------------------------|--| | (a) | $K_{c} = \frac{[PC]}{[}$ | Cl ₃][Cl ₂]
PCl ₅] | | | | • K_c expression correct. | | | | | | (b)(i)
(ii) | concentra | ation of react | s than 1/sma
ant (PCl ₅) is
acts (PCl ₃ /Cl ₂ | greater than | | • K_c is small o less than 1. | linked
propo | d to
ortions of
onts and | | | | (iii) | $K_{c} = \frac{[PC]}{[}$ $[PCl_{5}] = \frac{1}{2}$ | Cl ₃][Cl ₂] PCl ₅] [PCl ₃][Cl ₂] K _c | | | | • One step of calculation correct. | and s | | | | | | | $= \frac{0.352 \times 0.3}{0.612}$ $= 0.202 \text{ mol}$ | | | | | | | | | | (c) | Amount of As PCl ₃ (g equilibrius the concernis will Cl ₂ . | um will shift
entration of P
favour the fo | ses. $\frac{1}{\text{concentratio}}$ to oppose the $\text{Cl}_3(g)$. orward reaction | e change, i.e. | increase | • One correct statement. | terms | ved:
ined in
of
brium | explaterm
equipring | oved: ained in s of librium ciples and ed to the | | | Amount of Decrease increase in | the number of
the number of
the side
the side
th | | rticles, i.e. sheatest number
of gaseous pro
equilibrium v | uifts
r of
oducts
will shift | One correct statement. | decre
expla
terms
equili | • The pressure is decreased: explained in terms of equilibrium principles. | | pressure is eased: ained in s of librium eiples and ed to the ion. | | (d) | This mea
i.e. the fo
An increa
shift to fa
the endot | ns that equilibrate direct ase in temper avour the reachermic direct | rature causes ction that abs | in favour of
the equilibriu
orbs heat/en | products
um to | • One correct statement. | betwee
and
tempe
chang
one o
releva | • Link made between K_c and temperature change, and one other relevant statement. | | fication. | |] | NØ | N1 | N2 | A3 | A4 | M5 | M6 | E7 | ' | E8 | | no re | sponse or
elevant
dence. | 1a | 2a | 3a | 4a | 3m | 4m | 3e
with minor
error / omissi
/ additional
irrelevant
information | | 3e | | Three | Expected coverage | Achievement | Merit | Excellence | |--------|--|--|---|--| | (a)(i) | CO ₃ ²⁻ , OH ⁻ , HCN | • TWO correct. | | | | (ii) | $HPO_4^{2-} + H_2O \rightleftharpoons PO_4^{3-} + H_3O^+$ | ONE correct. | BOTH correct. | | | | $HPO_4^{2-} + H_2O \rightleftharpoons H_2PO_4^{-} + OH^{-}$ | | | | | (b)(i) | $K_{\rm w} = [{\rm H}_3{\rm O}^+] \ [{\rm OH}^-]$ $[{\rm H}_3{\rm O}^+] = \frac{K_{\rm w}}{[{\rm OH}^-]}$ $= 1 \times 10^{-14}/9.56 \times 10^{-5}$ $= 1.05 \times 10^{-10} \ {\rm mol} \ {\rm L}^{-1}$ | ONE step of
calculation
correct. | | | | (ii) | Basic since $[H_3O^+] < [OH^-] OR$ vice versa OR
Basic since $pH = -log(1.05 \times 10^{-10}) = 9.98$
OR $pH > 7$ | Correct statement. | | | | (c)(i) | $pH = -\log_{10}[H_3O^+]$
= -\log 0.133
= 0.876 | • pH correct. | | | | (ii) | $[H_3O^+] = 10^{-pH}$ $= 10^{-12.8}$ $= 1.58 \times 10^{-13} \text{ mol } L^{-1}$ $[OH^-] = 1 \times 10^{-14} / 1.58 \times 10^{-13}$ $= 0.0631 \text{ mol } L^{-1}$ | ONE step of calculation correct. | BOTH steps of
calculation correct (units
and sig. fig. not
required). | | | (d) | NH ₄ Cl(aq) is solution A:
good conductor of electricity – it fully
dissociates in solution into ammonium and
chloride ions, which conduct electricity.
NH ₄ Cl \rightarrow NH ₄ ⁺ + Cl ⁻
Its pH is that of a weak acid, as the
ammonium ion is a weak acid and
partially dissociates in water, producing
hydronium ions:
NH ₄ ⁺ + H ₂ O \rightleftharpoons NH ₃ + H ₃ O ⁺ | ONE correct statement. OR ONE correct equation. | ONE correct explanation with correct equation. OR TWO correct explanations. | • Correct justifications for both pH and conductivity fully linked to equations for TWO of the three substances. | | | NH ₃ (aq) is solution B :
its pH is that of a weak base as NH ₃ is a
weak base and it partially dissociates in
water, producing hydroxide ions:
NH ₃ + H ₂ O \rightleftharpoons NH ₄ ⁺ + OH ⁻
Poor conductor of electricity as it is only
partially dissociated into ions in water. | ONE correct
statement OR ONE correct
equation. | ONE correct explanation with correct. OR TWO correct explanations. | | | | HCl(aq) is solution C:
low pH is that of a strong acid, HCl fully
dissociates in water, producing hydronium
ions:
HCl + H ₂ O \rightarrow H ₃ O ⁺ + Cl ⁻
Good conductor of electricity as it fully
dissociates into ions in solution which
conduct electricity. | ONE correct statement. OR ONE correct equation. | ONE correct explanation with correct equation. OR TWO correct explanations. | | | NØ | N1 | N2 | A3 | A4 | M5 | M6 | E7 | E8 | |--------------------------------------|----|----|----|----|----|----|---|----| | No response or no relevant evidence. | 1a | 3a | 4a | 5a | 3m | 4m | e with minor error / omission / additional irrelevant information | e | ## **Judgement Statement** | | Not Achieved | Achievement | Achievement with Merit | Achievement with Excellence | |-------------|--------------|-------------|------------------------|-----------------------------| | Score range | 0 – 6 | 7 – 13 | 14 – 18 | 19 – 24 |