Assessment Schedule – 2012

Chemistry: Demonstrate understanding of chemical reactivity (91166)

Assessment Criteria

Achievement	Achievement with Merit	Achievement with Excellence
Demonstrate understanding involves describing, identifying, naming, drawing, calculating, or giving an account of chemical reactivity. This requires the use of chemistry vocabulary, symbols and conventions.	Demonstrate in-depth understanding involves explaining chemical reactivity. This requires explanations that use chemistry vocabulary, symbols and conventions.	Demonstrate comprehensive understanding involves elaborating, justifying, relating, evaluating, comparing and contrasting, or analysing chemical reactivity. This requires the consistent use of chemistry vocabulary, symbols and conventions.

One	Expected	d coverage			Achiev	vement	Meri	it			Excellence	
(a)	reactan	se concentra it. se temperatu			• One	correct.						
(b)	Concentre decreased of reaction This mean particles collision Experime Tempera of reaction This mean The particles in the particles of the particles of the particles as the particles as the particles of the pa	nns there are apper unit volustrate decreased and 1 ture is increased in increases. The state of the state o	reased the rate fewer reactan me so the es. sed, so the ra ore average e moving faste ease in the	t teer.	Factor and reaction rate decreases. Fewer reactant particles per unit volume OR collision rate decreases. Factor and reaction rate increase. Particles moving faster OR more kinetic energy. Collisions more effective OR easier to overcome activation energy.		rate AN Fev par vol OR Co dec Fac rate AN The mo and The inc free bet OR Par eff par ene the	e dec ND E wer inticle lumes a sublision creas ctor is e incore k d are ere vereas equer twee a tricle ergy	on rate	er. ons	moving fas	on rate and fewer articles per the AND atte sis: Factor on rate and the ave more orgy and are ster. There increase in acy of between ND aso collide tively as es have gy to the energy for
-	NØ N1 N2			A3 A4		M5		M6		E7	E8	
no r	sponse or elevant dence.	1a	2a		3a	4a	1m		2m	erro	2e vith minor or / omission additional irrelevant nformation	2e

Two	Expected	l coverage				Achievement	Merit		Excell	ence
(a)	$K_{c} = \frac{[PC]}{[}$	Cl ₃][Cl ₂] PCl ₅]				• K_c expression correct.				
(b)(i) (ii)	concentra	ation of react	s than 1/sma ant (PCl ₅) is acts (PCl ₃ /Cl ₂	greater than		• K_c is small o less than 1.	linked propo	d to ortions of onts and		
(iii)	$K_{c} = \frac{[PC]}{[}$ $[PCl_{5}] = \frac{1}{2}$	Cl ₃][Cl ₂] PCl ₅] [PCl ₃][Cl ₂] K _c				• One step of calculation correct.	and s			
		$= \frac{0.352 \times 0.3}{0.612}$ $= 0.202 \text{ mol}$								
(c)	Amount of As PCl ₃ (g equilibrius the concernis will Cl ₂ .	um will shift entration of P favour the fo	ses. $\frac{1}{\text{concentratio}}$ to oppose the $\text{Cl}_3(g)$. orward reaction	e change, i.e.	increase	• One correct statement.	terms	ved: ined in of brium	explaterm equipring	oved: ained in s of librium ciples and ed to the
	Amount of Decrease increase in	the number of the number of the side the side th		rticles, i.e. sheatest number of gaseous pro equilibrium v	uifts r of oducts will shift	One correct statement.	decre expla terms equili	• The pressure is decreased: explained in terms of equilibrium principles.		pressure is eased: ained in s of librium eiples and ed to the ion.
(d)	This mea i.e. the fo An increa shift to fa the endot	ns that equilibrate direct ase in temper avour the reachermic direct	rature causes ction that abs	in favour of the equilibriu orbs heat/en	products um to	• One correct statement.	betwee and tempe chang one o releva	• Link made between K_c and temperature change, and one other relevant statement.		fication.
]	NØ	N1	N2	A3	A4	M5	M6	E7	'	E8
no re	sponse or elevant dence.	1a	2a	3a	4a	3m	4m	3e with minor error / omissi / additional irrelevant information		3e

Three	Expected coverage	Achievement	Merit	Excellence
(a)(i)	CO ₃ ²⁻ , OH ⁻ , HCN	• TWO correct.		
(ii)	$HPO_4^{2-} + H_2O \rightleftharpoons PO_4^{3-} + H_3O^+$	ONE correct.	BOTH correct.	
	$HPO_4^{2-} + H_2O \rightleftharpoons H_2PO_4^{-} + OH^{-}$			
(b)(i)	$K_{\rm w} = [{\rm H}_3{\rm O}^+] \ [{\rm OH}^-]$ $[{\rm H}_3{\rm O}^+] = \frac{K_{\rm w}}{[{\rm OH}^-]}$ $= 1 \times 10^{-14}/9.56 \times 10^{-5}$ $= 1.05 \times 10^{-10} \ {\rm mol} \ {\rm L}^{-1}$	ONE step of calculation correct.		
(ii)	Basic since $[H_3O^+] < [OH^-] OR$ vice versa OR Basic since $pH = -log(1.05 \times 10^{-10}) = 9.98$ OR $pH > 7$	Correct statement.		
(c)(i)	$pH = -\log_{10}[H_3O^+]$ = -\log 0.133 = 0.876	• pH correct.		
(ii)	$[H_3O^+] = 10^{-pH}$ $= 10^{-12.8}$ $= 1.58 \times 10^{-13} \text{ mol } L^{-1}$ $[OH^-] = 1 \times 10^{-14} / 1.58 \times 10^{-13}$ $= 0.0631 \text{ mol } L^{-1}$	ONE step of calculation correct.	BOTH steps of calculation correct (units and sig. fig. not required).	
(d)	NH ₄ Cl(aq) is solution A: good conductor of electricity – it fully dissociates in solution into ammonium and chloride ions, which conduct electricity. NH ₄ Cl \rightarrow NH ₄ ⁺ + Cl ⁻ Its pH is that of a weak acid, as the ammonium ion is a weak acid and partially dissociates in water, producing hydronium ions: NH ₄ ⁺ + H ₂ O \rightleftharpoons NH ₃ + H ₃ O ⁺	ONE correct statement. OR ONE correct equation.	ONE correct explanation with correct equation. OR TWO correct explanations.	• Correct justifications for both pH and conductivity fully linked to equations for TWO of the three substances.
	NH ₃ (aq) is solution B : its pH is that of a weak base as NH ₃ is a weak base and it partially dissociates in water, producing hydroxide ions: NH ₃ + H ₂ O \rightleftharpoons NH ₄ ⁺ + OH ⁻ Poor conductor of electricity as it is only partially dissociated into ions in water.	 ONE correct statement OR ONE correct equation. 	ONE correct explanation with correct. OR TWO correct explanations.	
	HCl(aq) is solution C: low pH is that of a strong acid, HCl fully dissociates in water, producing hydronium ions: HCl + H ₂ O \rightarrow H ₃ O ⁺ + Cl ⁻ Good conductor of electricity as it fully dissociates into ions in solution which conduct electricity.	 ONE correct statement. OR ONE correct equation. 	 ONE correct explanation with correct equation. OR TWO correct explanations. 	

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.	1a	3a	4a	5a	3m	4m	e with minor error / omission / additional irrelevant information	e

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence
Score range	0 – 6	7 – 13	14 – 18	19 – 24