Assessment Schedule – 2013

Chemistry: Demonstrate understanding of chemical reactivity (91166)

Evidence Statement

Question	Evidence	Achievement	Merit	Excellence
ONE (a) (i) & (ii) (b)	Surface area. When the marble chips are crushed there is a greater surface area. This means there are now more particles for collisions to occur between the acid and the calcium carbonate. Because more collisions can now occur in a shorter amount of time (more frequently) the reaction is faster. In Experiment 2, the only change is an increase in temperature. An increase in temperature means a faster rate of reaction. For a chemical reaction to occur, the reactants must collide effectively. This means they must collide with enough energy to overcome the activation energy of the reaction. The activation energy is the energy that is required to start a reaction. When the temperature is higher, the particles have more kinetic energy; the particles are moving faster. Because the particles are moving faster. Because the particles are moving faster, there will be more frequent collisions. Also because the particles are moving with more kinetic energy, it will be more likely that when collisions occur they are more likely to be effective, i.e. collide with enough energy. Therefore the rate of reaction is faster, as more effective collisions are occurring more frequently. In Experiment Three, a catalyst is used (the copper ions). Use of a catalyst speeds up the rate of chemical reaction. For a chemical reaction to occur, the reactants must collide effectively. This means they must collide with enough energy to overcome the activation energy of the reaction. The activation energy is the energy that is required to start a reaction. When a catalyst is used, the activation energy is lowered. This is because the catalyst provides an alternative pathway for the reaction to occur in which the activation energy is lowered. Now that the activation energy has been lowered, more reactant particles will collide with sufficient energy to overcome this lowered activation energy. Therefore, the rate of reaction is faste	 Surface area There is a greater surface area when powder is used. Collisions occur more frequently when powder is used. For a chemical reaction to occur, particles must collide effectively. An increase in temperature means particles move faster OR have more kinetic energy. Collisions occur more frequently when there is an increase in temperature. The activation energy is the energy that must be provided to start a chemical reaction. A catalyst speeds up the rate of reaction by lowering the activation energy OR providing an alternative pathway. 	 Links surface area correctly to particle collision theory. Links temperature correctly to particle collision theory. Links catalyst correctly to activation energy. 	 Elaborates on why Experiment 2 reaction is faster than Experiment 1 reaction. Elaborates on why Experiment 3 reaction is faster than Experiment 1 reaction.

NCEA Level 2 Chemistry (91166) 2013 - page 2 of 6

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.	2a	3a	4a	5a	2m	3m	e	2e

TWO (a) $K_c = \frac{[NH_3]^2}{[N_2][H_2]^3}$ • Correct K_c expression. AND writes a correct equilibrium the system responds to reduce the effect of that change. If there• When a change is made to a system that is at equilibrium the system responds to resure the• Correct K_c expression. AND writes a correct equation.• When a change is made to a system that is at equilibrium the system responds to reduce the effect of that change. If there• Correct K_c expression. AND writes a correct equation.• When a change is made to a system that is at equilibrium the system responds to resure the in pressure the• When a change is made to a system that is at equilibrium the system responds to reduce the effect of that change. If there is an increase in pressure the	Achievement Merit Excellence	Achievement	Evidence	Question
 (d) As the temperature increases, the system responds the creation is an increase in pressure of the container, there is less pressure. (d) As the temperature increases, K_c decreases, The decreasing value of K_c indicates that the reaction is endothermic direction. Since the increasing temperature favoural the reaction is endothermic direction. Since the increasing temperature favoural the reaction is endothermic direction. Since the increasing temperature favoural the reaction is endothermic direction. Since the increasing temperature favoural the reaction is endothermic direction. Since the increasing temperature favoura the reaction is endothermic direction. Since the increasing temperature favoura the reaction is endothermic direction. Since the increasing temperature favoura the reaction is endothermic direction. Since the increasing temperature favoura the reaction is endothermic direction. Since the increasing temperature favoura the reaction is endothermic direction. Since the increasing temperature favoura the reaction is endothermic direction. Since the increasing temperature favoura the reaction is endothermic direction. Since the increasing temperature favoura the reaction is endothermic direction. Since the increasing temperature favoura the reaction is endothermic direction. Since the increasing temperature favoura the reaction is endothermic direction. Since the increasing temperature favoura the reaction is endothermic direction. Since the increasing temperature favoura than products. One step in all denere favoura than products.	Correct K_c expression. AND writes a correct equation.• When a change is made to a system that is at equilibrium the system responds to reduce the effect of that change. If there is an increase in pressure, the system responds by decreasing the pressure.• Comprehensively compares and contrasts the two reactions in (c).Increase in pressure.• In Reaction One there are the same number of gas particles on both sides of the equation and therefore neither reaction Will be favoured.• In Reaction One there are less gas particles on the reaction Will be favoured.For Reaction One reactant side has more moles than product side.• AND In Reaction Two the ray eless gas particles on the roduct side has nore moles than product side.• Elaborates on the effect of the temperature is increased, the system responds by reducing the temperature.• Elaborates on the effect of the reactants. For the K_c to be smaller, i.e. there will be less of the product and more of the reactants. For Reaction for more teatant. Soft the concentration of the product and more of the reactants. COR When the temperature on K_c indicates ther are more reactants than products.• Comprehensively contrast the two reaction Two the concentration of the product and decreases the system responds and decreases the system responds and decreases the temperature. To do this, the reaction that is endothermic will be favoured. • Calculation correct.• Comprehensively contrast the two reactants. OR When the reactants. OR When the reaction that is endothermic will be favoured. • Cal	 Correct <i>K</i>_c expression. AND writes a correct equation. If there is an increase in pressure, the system responds by decreasing the pressure. Increase in pressure favours the side with fewer moles of gas. For Reaction One reactant moles = product moles. AND For Reaction Two reactant side has more moles than product side. As the temperature increases, the <i>K</i>_c decreases. When the temperature is increased, the system responds by reducing the temperature. A smaller value of <i>K</i>_c indicates there are more reactants than products. One step in calculation correct. 	$K_{c} = \frac{[NH_{3}]^{2}}{[N_{2}][H_{2}]^{3}}$ $2SO_{2} + O_{2} \rightleftharpoons 2SO_{3}$ When a change is made to a system that is at equilibrium, the system responds to reduce the effect of that change. If there is an increase in pressure, the system responds by decreasing the pressure. This occurs by favouring the reaction that produces fewer gas particles. Because there are now fewer particles hitting the sides of the container, there is less pressure. In Reaction One there are two moles of gas particles on each side of the equation. Because there are the same numbers of gas particles on both sides of the reaction, then a change in pressure will have no effect as neither reaction will be favoured. In Reaction Two however, there are four moles of gas particles on the reactant side of the equation and two moles of gas particles on the product side of the equation. Therefore, when there is an increase in pressure, the system would shift and favour the forward reaction meaning there are now fewer gas particles overall and hence fewer gas particles overall and hence fewer gas particles is pressure overall. As the temperature increases, K_{c} decreases. The decreasing value of K_{c} indicates that the reaction is reactant-favoured (i.e. more reactants than products). When temperature increases, the system responds and decreases the temperature by shifting in the endothermic direction. Since the increasing temperature favours the reactants, this must mean that the reverse reaction is endothermic and the forward reaction (formation of NH ₃) is exothermic .	TWO (a) (b) (c) (d)

(e)	$\frac{[\mathrm{HI}(g)]^2}{[\mathrm{H}_2(g)][\mathrm{I}_2(g)}$ $\frac{[\mathrm{HI}(g)]^2}{[0.0190][0.21]}$ $\frac{[\mathrm{HI}(g)]^2}{3.99 \times 10^{-3}} = [\mathrm{HI}(g)]^2 = 0.1$ $[\mathrm{HI}(g)]^2 = 0.43$	$\frac{1}{0} = 46.8$ $\frac{1}{0} = 46.8$ 46.8 87 2 mol L^{-1}							
NØ	N1	N2	A3	A4	M5	M6	E7	1	E8
No response or no relevant evidence.	la	2a	4a	5a	2m	3m	e		2e

Question	Evidence	Achievement	Merit	Excellence	
THREE (a)	An acid and its conjugate base differ by a hydrogen ion. An acid has an extra hydrogen ion. HCl has an extra hydrogen ion than its conjugate base Cl^- and HSO_4^- has an extra hydrogen ion than its conjugate base SO_4^{2-} .	• Describes an acid and its conjugate base as differing by one hydrogen ion.	• Explains the difference between an acid and its conjugate base using an example from the table	• Comprehensively compares and contrasts the reactivity of TWO of the acids with Mg in terms of	
(b)	$[OH^{-}] = \frac{1.00 \times 10^{-14}}{0.0125} = 8.00 \times 10^{-13} \text{ molL}^{-1}$ pH = -log [H ₃ O ⁺] = -log 0.0125 = 1.90	• One calculation correct from (b).	the table.	[H ₃ O ⁻], strength of acid and collision frequency.	
(c)(i)	$CH_3COOH + H_2O \rightleftharpoons CH_3COO^- + H_3O^+$	 Equation correct 	• Explains that the		
(ii)	This solution is acidic, as ethanoic acid reacts with water to produce hydronium ions. $[H_3O^+] > [OH^-]$ making the solution acidic.	OR ethanoic acid reacts with water to produce hydronium ions.	solution is acidic because the concentration of hydronium ions is greater than 1×10^{-7} mol L ⁻¹		
(d)(i)	$\begin{array}{rcl} 2HA & + & Mg \rightarrow & MgA_2 + & H_2 \\ OR & & & & \end{array}$	• Correct equation with magnesium.	OR $[H_3O^+] > [OH^-].$		
(ii)	$2H^+ + Mg \rightarrow Mg^{2+} + H_2$ A strong acid is an acid that dissociates completely, meaning that all the acid molecules donate H^+ ions. A weak acid partially dissociates, meaning that only a small proportion of acid molecules donate H^+ ions.	 Strong acid dissociates completely. OR Weak acid partially dissociates. 	• Explains the difference between a strong and weak acid.		
(iii)	HA $[H_3O^+] = 10^{-3.4} = 3.98 \times 10^{-4} \text{ mol } \text{L}^{-1}$ HB $[H_3O^+] = 10^{-2} = 0.0100 \text{ mol } \text{L}^{-1}$ HC $[H_3O^+] = 10^{-5} = 1.00 \times 10^{-5} \text{ mol } \text{L}^{-1}$ The concentration of hydronium ions is the same as the concentration of the acid for HB and HC, which means they are strong acids, since they both completely dissociate when they react with water. The concentration of hydronium ions in HA is less than the concentration of the acid HA, therefore it is a weaker acid, since it only partially dissociates in water. HB will react faster with the Mg, as it has the greatest concentration of hydronium ions since it has the lowest pH. Because the concentration of hydronium ions is greater in HB, there are more hydronium ion particles in the same volume to collide with the Mg. Therefore, there will be more frequent collisions, and hence a faster rate of reaction. Even though HA has a higher concentration than HB, it is a weaker acid, so it only partially dissociates and not all of the HA particles donate hydrogen ions. Therefore the concentration of hydronium ions is low, so there are fewer hydronium ion particles	 One correct calculation of hydronium ions. States the strength of TWO of the acids. 	• Explains the reactivity of the TWO of the acids with Mg in terms of [H ₃ O ⁺]. OR explains the strength of TWO of the acids in terms of [acid] and [H ₃ O ⁺].		

	in the same volume to collide with the Mg. Therefore, there will be less frequent collisions, and hence a slower rate of reaction compared to HB. The concentration of HC is very low, and even though it is a stronger acid than HA and completely dissociates in water, there will still be the lowest number of hydronium ion particles in the same volume to collide with Mg. Therefore there will be even less frequent collisions, and hence the slowest rate of reaction compared to HB and HA.			t l -,				
NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response or no relevant evidence.	la	2a	3a	4a	2m	3m	e (minor error / omission / extra information present	e

Judgement Statement

	Not Achieved	Achievement	Achievement with Merit	Achievement with Excellence	
Score range	0 – 6	7 – 13	14 – 18	19 – 24	