Assessment Schedule – 2020

Chemistry: Demonstrate understanding of chemical reactivity (91166)

Evidence Statement

Q	Evidence	Achievement	Merit	Excellence
ONE (a)(i) (ii)	NaHCO ₃ \rightarrow Na ⁺ + HCO ₃ ⁻ Acid: HCO ₃ ⁻ + H ₂ O \rightleftharpoons CO ₃ ²⁻ + H ₃ O ⁺ Base: HCO ₃ ⁻ + H ₂ O \rightleftharpoons H ₂ CO ₃ + OH ⁻	• One equation correct.		
(b)(i) (ii)	$[H_{3}O^{+}] = 10^{-11.8} = 1.58 \times 10^{-12} \text{ mol } L^{-1}$ $[OH^{-}] = \frac{1 \times 10^{-14}}{1.58 \times 10^{-12}} = 6.31 \times 10^{-3} \text{ mol } L^{-1}$ (or 0.00631 mol L ⁻¹) $[H_{3}O^{+}] = \sqrt{0.114} \times 10^{-14} = 3.38 \times 10^{-8} \text{ mol } L^{-1}$ $pH = -\log[H_{3}O^{+}] = 7.47$	 Calculates hydronium ions in (i). Calculates hydronium ions (ii). OR Recognises [H₃O⁺] = [OH⁻]. 	 Calculates hydroxide ion concentration in (i). Calculates pH in (ii). 	• All calculations correct with units.
(c)	The higher the pH, the more hydroxide ions present and the fewer hydronium ions, because the product of hydronium and hydroxide ions is 1×10^{-14} , and pH is the negative log of the hydronium ion concentration. The more hydroxide ions, the greater the dissociation or ionisation in water due to more ions being present. NaOH is a strong base, so fully dissociates releasing many OH ⁻ ions giving a very high [OH ⁻], a very low [H ₃ O ⁺] and in turn a high pH. NaOH \rightarrow Na ⁺ + OH ⁻ NH ₃ is a weak base, so only partially ionises, releasing fewer hydroxide ions than NaOH; giving a high [OH ⁻],a low [H ₃ O ⁺], in turn a high (10.6) pH, but still lower NaOH. NH ₃ + H ₂ O \rightleftharpoons NH ₄ ⁺ + OH ⁻ CH ₃ COONa dissolves into ions and in turn the released weak base CH ₃ COO ⁻ partially dissociates, releasing even fewer hydroxide ions than ammonia, so an increased [OH ⁻],a lowered [H ₃ O ⁺], in turn a pH above 7 (8.88), but lower than ammonia. CH ₃ COO ⁻ + H ₂ O \rightleftharpoons CH ₃ COO ⁻ + Na ⁺ CH ₃ COO ⁻ + H ₂ O \rightleftharpoons CH ₃ COOH + OH ⁻	 Recognises that pH is a measurement of [H3O⁺] ions. OR States that higher [OH⁻] the higher the pH. Recognises degree of dissociation for two solutions. 	 Links differences in pH in terms of concentrations of OH– (or [H3O+]) ions for two solutions. Links dissociation of TWO solutions to two correct equations. 	 Relates the pH to relative dissociation and either OH⁻ or H₃O⁺ ion concentration with relevant equations for each solution.

NØ	N1	N2	A3	A4	M5	M6	E7	E8
----	----	----	----	----	----	----	----	----

	ponse; no t evidence.	la	2a	3a		4a	2m	3m	2e (1 error)	2e	
Q		Evider	ice		1	Achievement	Merit		Excellence		
TWO (a)	greater the An increase reaction be increased. frequency More of the successful the activate of effective	er the solution, the more colour change after 45 sed temperature means ecause the kinetic energ The particles are movin of collisions. these collisions will have collisions, which mean ion energy. Overall, this e collisions, so the rate n turns colourless more	an increase in the gy of the particles ng faster, increasing e enough energy to as their energy is g s leads to a greate of reaction is incr	rate of the has ng the o be greater than er frequency	kinetic OR Recogn particle with m • Recogn indicat	nises increased e energy of particles. nises faster moving es collide more often / nore energy. nises that the picture reas faster reaction rate reater temperature.	 Link increased freque effective/successful EITHER: the rate change obsecontext OR Increased temperesulting in more kirr of particles OR Increased temperesulting in more collected to the second temperesulting in more collected to the second text of text of	collisions to rved in the rature netic energy rature llisions	• Links temperature to more kinetic energy of particles which gives to more collisions exceeding activation energy and in turn to a greater frequency of effective collisions. This is then used to justify rate change in the observations.		
(b)(i) (ii)	Solution A because th concentrat in the sam	L^{-1} tol L^{-1} or 1.15 x 10 ⁻³ m a will have the highest r te lowest pH (solution A ion of H ₃ O ⁺ , therefore to the volume, so there will more effective collision	rate of reaction. The A) has the highest there are more aci be more frequent	d particles		correct calculations. ies Solution A.	 All calculations correct with solution A identified and linked to concentration. Links a higher concentration of H₃O⁺ to more frequent collisions and reaction rate. 		• Explains the relative concentration H ₃ O ⁺ linked to solution A, and reaction rate by referring to frequency of effective collisions.		
(c)	HCl is a st produce a mobile cha Ethanoic i therefore r conductor	$D \rightarrow H_3O^+ + Cl^-$ rong acid, so it ionises lot of ions. Conductivit arged particles, in this i s a weak acid, so partia not producing many ion with HCl is a good cor $H + H_2O \rightleftharpoons CH_3COO^-$	y depends on the nstance ions, to co lly ionises in solu s. So ethanoic aci iductor.	number of onduct. tion,	conduc numbe movin OR Identif conduc	nises that ctivity depends on the er of ions (or free g charged particles). Ties HCl as the better ctor equation correct.	• Links the number of produced in each aci ability to conduct.		• Uses two correct equextent of ionisation ability of each acid the electricity.	to illustrate the	

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; r relevant eviden		2a	3a	4a	2m	3m	2e	3e

Q	Evidence	Achievement	Merit	Excellence
THREE (a)(i) (ii) (iii) (iv)	$K_{c} = \frac{[CF_{4}][CO_{2}]}{[COF_{2}]^{2}}$ $K_{c} = \frac{0.8 \times 0.8}{0.40^{2}} = 400$ The value of <i>K</i> is significantly over 1, so there are far more products than reactants, which means the equilibrium favours the products. The reaction is exothermic. If the temperature is decreased, the reaction moves in the exothermic direction to produce more heat energy. For this reaction, it will favour the forward reaction. This leads to fewer reactants / increased products so the value of <i>K</i> _c will increase.	 K_c expression correct. Correct process for calculation. Recognises K_c increased means more products (or products favoured) Identifies that a temperature decrease moves the equilibrium in the exothermic direction. OR Identifies the forward reaction as exothermic / releases heat. 	 Correct calculation and explanation of value of K_c. Links the forward reaction as exothermic (or gives out heat) and that temperature decreased favours the exothermic reaction and therefore the forward direction is favoured. 	• Explains that as the forward reaction is exothermic and that temperature decreased favours the exothermic reaction (or gives out heat) and therefore the forward direction is favoured giving more product and hence a larger K_c .
(b)(i)	Adding thiocyanate ions to the equilibrium means there is an increase in the concentration of a reactant. The system will react to reduce this change so the forward reaction will be favoured to use up the added SCN ⁻ ions producing more red [FeSCN] ²⁺ . This means the dark red colour will intensify.	• Identifies correct shift in equilibrium with a reason for ONE of these reactions.	• For two parts: links the change to the system to the system minimising / resisting change and gives the correct direction favoured.	 Justifies each colour change using equilibria principles for all THREE reactions.
(ii)	The added fluoride ions reacts with the Fe^{3+} ions, and this decreases the concentration of the Fe^{3+} in this equilibrium. The system will react by favouring the backward reaction to replace the lost orange Fe^{3+} ions, while using up red $[FeSCN]^{2+}$. This means the dark red colour will lighten and it will become more orange.	Identifies TWO correct colour changes.	 For two parts: links the production or loss of Fe³⁺ or [FeSCN]²⁺ to colour change. 	
(iii)	The forward reaction produces heat so when the mixture is put into hot water, the reaction moves in the endothermic direction to absorb the added heat energy. This will favour the backward reaction using up red [FeSCN] ²⁺ and producing orange Fe ³⁺ , which means the dark red colour will lighten and the mixture will be more orange.			

NØ	N1	N2	A3	A4	M5	M6	E7	E8
No response; no relevant evidence.	la	2a	3a	4a	2m	3m	2e (minor error or omission)	2e

Cut Scores

Not Achieved			Achievement with Excellence	
0 – 6	7 – 13	14 – 18	19 – 24	