2

91166



SUPERVISOR'S USE ONLY

# Level 2 Chemistry, 2018

## 91166 Demonstrate understanding of chemical reactivity

9.30 a.m. Monday 26 November 2018 Credits: Four

| Achievement                                       | Achievement with Merit                                     | Achievement with Excellence                                     |
|---------------------------------------------------|------------------------------------------------------------|-----------------------------------------------------------------|
| Demonstrate understanding of chemical reactivity. | Demonstrate in-depth understanding of chemical reactivity. | Demonstrate comprehensive understanding of chemical reactivity. |

Check that the National Student Number (NSN) on your admission slip is the same as the number at the top of this page.

### You should attempt ALL the questions in this booklet.

A periodic table is provided in the Resource Booklet L2–CHEMR.

If you need more room for any answer, use the extra space provided at the back of this booklet and clearly number the question.

Check that this booklet has pages 2–12 in the correct order and that none of these pages is blank.

YOU MUST HAND THIS BOOKLET TO THE SUPERVISOR AT THE END OF THE EXAMINATION.

TOTAL

### **QUESTION ONE**

In the iodine clock reaction, a solution of hydrogen peroxide is mixed with a solution containing potassium iodide, starch, and sodium thiosulfate.

After some time, the colourless mixture suddenly turns dark blue.

The table shows the time taken for the reaction performed at different temperatures. The concentration

| of all reactants was kept constant. |                                       |  |
|-------------------------------------|---------------------------------------|--|
| Temperature / °C                    | Time for dark blue colour to appear/s |  |
| 20                                  | 15                                    |  |
| 30                                  | 9                                     |  |
| 40                                  | 1                                     |  |



ASSESSOR'S USE ONLY

| Explain the effect of changing the temperature on the rate of reaction. |  |  |  |
|-------------------------------------------------------------------------|--|--|--|
| Refer to collision theory and activation energy in your answer.         |  |  |  |
|                                                                         |  |  |  |
|                                                                         |  |  |  |
|                                                                         |  |  |  |
|                                                                         |  |  |  |
|                                                                         |  |  |  |
|                                                                         |  |  |  |
|                                                                         |  |  |  |
|                                                                         |  |  |  |
|                                                                         |  |  |  |
|                                                                         |  |  |  |
|                                                                         |  |  |  |
|                                                                         |  |  |  |

|      | 3                                                                                                                                                                                           |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Cons | sider the following observations in another experiment using hydrogen peroxide:                                                                                                             |
|      | When hydrogen peroxide is mixed with solution <b>X</b> , which contains universal indicator, the colour changes from blue to green to yellow to orange-red <b>over a time of one hour</b> . |
|      | If a crystal of <b>ammonium molybdate</b> is added to solution <b>X</b> before the hydrogen peroxide is added, the same colour changes will be seen in <b>three to four minutes</b> .       |
| i)   | Identify and explain the role of ammonium molybdate.                                                                                                                                        |
|      | Use a diagram and refer to activation energy in your answer.                                                                                                                                |
|      |                                                                                                                                                                                             |
|      |                                                                                                                                                                                             |
|      |                                                                                                                                                                                             |
|      |                                                                                                                                                                                             |
|      |                                                                                                                                                                                             |
|      |                                                                                                                                                                                             |
|      |                                                                                                                                                                                             |
|      |                                                                                                                                                                                             |
|      |                                                                                                                                                                                             |
|      |                                                                                                                                                                                             |
| ii)  | The pH of the original solution $\mathbf{X}$ is 10.8.                                                                                                                                       |
|      | Calculate the hydronium ion concentration, [H <sub>3</sub> O <sup>+</sup> ], and the hydroxide ion concentration, [OH <sup>-</sup> ], in the solution.                                      |
|      | $[H_3O^+] = $                                                                                                                                                                               |
|      |                                                                                                                                                                                             |
|      |                                                                                                                                                                                             |

| (iii) | The sodium hydroxide solution, NaOH( $aq$ ), used to prepare solution <b>X</b> has a concentration of 0.0125 mol L <sup>-1</sup> .                              | ASSESSOR'S<br>USE ONLY |
|-------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
|       | Calculate the pH of the sodium hydroxide solution.                                                                                                              |                        |
|       |                                                                                                                                                                 |                        |
|       |                                                                                                                                                                 |                        |
|       |                                                                                                                                                                 |                        |
|       |                                                                                                                                                                 |                        |
| (iv)  | Another chemical in solution $\mathbf{X}$ is a salt, sodium ethanoate, $CH_3COONa$ . When solid sodium ethanoate is dissolved in water, it separates into ions. |                        |
|       | Use TWO relevant equations to explain whether <b>the solution</b> is acidic or basic.                                                                           |                        |
|       |                                                                                                                                                                 |                        |
|       |                                                                                                                                                                 |                        |
|       |                                                                                                                                                                 |                        |
|       |                                                                                                                                                                 |                        |
|       |                                                                                                                                                                 |                        |
|       |                                                                                                                                                                 |                        |
|       |                                                                                                                                                                 |                        |
|       |                                                                                                                                                                 |                        |
|       |                                                                                                                                                                 |                        |
|       |                                                                                                                                                                 |                        |

### **QUESTION TWO**

ASSESSOR'S USE ONLY

The Contact Process is used industrially in the manufacture of sulfuric acid. One step in this process is the oxidation of sulfur dioxide,  $SO_2(g)$ , to sulfur trioxide,  $SO_3(g)$ .

$$2SO_2(g) + O_2(g) \rightleftharpoons 2SO_3(g)$$

(a) Write the equilibrium constant expression for this reaction.

 $K_{\rm c} =$ 

(b) (i) Calculate the equilibrium constant  $(K_c)$  for this reaction at 600°C using the following concentrations:

 $\begin{array}{ll} [\mathrm{SO}_2] &= 0.100 \; \mathrm{mol} \; \mathrm{L}^{-1} \\ [\mathrm{O}_2] &= 0.200 \; \mathrm{mol} \; \mathrm{L}^{-1} \\ [\mathrm{SO}_3] &= 0.0930 \; \mathrm{mol} \; \mathrm{L}^{-1} \end{array}$ 

| (ii) | Explain what the size of the $K_c$ value indicates about the extent of the reaction at |
|------|----------------------------------------------------------------------------------------|
|      | equilibrium.                                                                           |

| $2SO_{1}(a) + 0$                                  | $O_2(g) \rightleftharpoons 2SO_3(g)$                                                                                                |
|---------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 200 <sub>2</sub> (g) · ·                          | $\mathcal{O}_2(g) \leftarrow 2\mathcal{O}_3(g)$                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
|                                                   |                                                                                                                                     |
| edict, using equi                                 | ilibrium principles, the effect on the concentration of sulfur trioxide gas,                                                        |
| redict, using equipolation $O_3(g)$ , of carrying | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a <b>larger</b> reaction vessel. |
| redict, using equipolation $D_3(g)$ , of carrying | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a <b>larger</b> reaction vessel. |
| redict, using equipolation $D_3(g)$ , of carrying | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a <b>larger</b> reaction vessel. |
| redict, using equipolation $D_3(g)$ , of carrying | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a <b>larger</b> reaction vessel. |
| redict, using equipolation $O_3(g)$ , of carrying | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a <b>larger</b> reaction vessel. |
| redict, using equipolation $D_3(g)$ , of carrying | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a <b>larger</b> reaction vessel. |
| redict, using equipolation $D_3(g)$ , of carrying | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a larger reaction vessel.        |
| redict, using equipolation $D_3(g)$ , of carrying | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a <b>larger</b> reaction vessel. |
| redict, using equipolation $D_3(g)$ , of carrying | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a larger reaction vessel.        |
| redict, using equipolar $D_3(g)$ , of carrying    | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a <b>larger</b> reaction vessel. |
| redict, using equipolar $D_3(g)$ , of carrying    | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a larger reaction vessel.        |
| redict, using equipolation $D_3(g)$ , of carrying | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a larger reaction vessel.        |
| redict, using equipolar $D_3(g)$ , of carrying    | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a larger reaction vessel.        |
| redict, using equipolar $D_3(g)$ , of carrying    | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a larger reaction vessel.        |
| redict, using equipolar $D_3(g)$ , of carrying    | illibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a larger reaction vessel.       |
| edict, using equipolation $D_3(g)$ , of carrying  | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a larger reaction vessel.        |
| edict, using equipolation $O_3(g)$ , of carrying  | ilibrium principles, the effect on the concentration of sulfur trioxide gas, g out the reaction in a larger reaction vessel.        |

| fustify whether the ox | xidation of sulfur dioxide | gas $SO_{-}(g)$ to sulfur             | trioxide gas SO (a) is  |
|------------------------|----------------------------|---------------------------------------|-------------------------|
| exothermic or endother | ermic.                     | - 500, 00 <sub>2</sub> (6), to suitur | 2101140 540, 003(8), 10 |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |
|                        |                            |                                       |                         |

### **QUESTION THREE**

ASSESSOR'S USE ONLY

(a) The hydrogensulfate ion,  $HSO_4^-$ , is an amphiprotic species because it can both accept or donate a proton, thus acting as an acid or base.

Complete the equations for the reactions of the hydrogensulfate ion,  $HSO_4^-$ , with water in the box below.

| HSO <sub>4</sub> <sup>-</sup> acting as | Equation                                      |
|-----------------------------------------|-----------------------------------------------|
| an acid                                 | $HSO_4^-(aq) + H_2O(\ell) \rightleftharpoons$ |
| a base                                  | $HSO_4^-(aq) + H_2O(\ell) \rightleftharpoons$ |

(b) The pH and relative electrical conductivity of aqueous solutions of potassium hydroxide, KOH(aq), and ammonia,  $NH_3(aq)$ , are shown in the table below. Both have concentrations of 0.100 mol  $L^{-1}$ .

| Chemical   | pН   | Conductivity |
|------------|------|--------------|
| KOH(aq)    | 13   | good         |
| $NH_3(aq)$ | 11.1 | poor         |

| Explain the difference in pH and conductivity of these two solution |
|---------------------------------------------------------------------|
|---------------------------------------------------------------------|

Use relevant equations in your answer.

(c)

| able below gives th | e pH of solutions of ethanoic ac | eid, $CH_3COOH(aq)$ , and nitric acid, |
|---------------------|----------------------------------|----------------------------------------|
|                     | cions of 0.200 mol $L^{-1}$ .    |                                        |
| Solution            | CH <sub>3</sub> COOH(aq)         | HNO <sub>3</sub> (aq)                  |
| рН                  | 2.73                             | 0.70                                   |
|                     |                                  |                                        |
|                     |                                  |                                        |
|                     |                                  | ate of reaction of each acid with a 2  |
| strip of cleaned ma | gnesium ribbon, Mg.              | ate of reaction of each acid with a 2  |
| strip of cleaned ma |                                  | ate of reaction of each acid with a 2  |
| strip of cleaned ma | gnesium ribbon, Mg.              | ate of reaction of each acid with a 2  |
| strip of cleaned ma | gnesium ribbon, Mg.              | ate of reaction of each acid with a 2  |
| strip of cleaned ma | gnesium ribbon, Mg.              | ate of reaction of each acid with a 2  |
| strip of cleaned ma | gnesium ribbon, Mg.              | ate of reaction of each acid with a 2  |
| strip of cleaned ma | gnesium ribbon, Mg.              | ate of reaction of each acid with a 2  |

|                    |  | Extra paper if required.                    |   |
|--------------------|--|---------------------------------------------|---|
| UESTION            |  | Write the question number(s) if applicable. |   |
| QUESTION<br>NUMBER |  | (1)                                         | ] |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |
|                    |  |                                             |   |

|                    |   | Extra paper if required.                    |  |
|--------------------|---|---------------------------------------------|--|
| QUESTION<br>NUMBER |   | Write the question number(s) if applicable. |  |
| NUMBER             | l |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |
|                    |   |                                             |  |

| AS | SE | SSC | DR' | S |
|----|----|-----|-----|---|
| U  | SE | ON  | LY  |   |

ASSESSOR'S USE ONLY

|                    | Extra paper if required.                    |  |
|--------------------|---------------------------------------------|--|
| QUESTION<br>NUMBER | Write the question number(s) if applicable. |  |
| NUMBER             |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |
|                    |                                             |  |