Assessment Schedule - 2018 ## Chemistry: Demonstrate understanding of equilibrium principles in aqueous systems (91392) ## **Evidence Statement** | Q | Evidence | Achievement | Merit | Excellence | |----------------|---|--|---|------------| | ONE
(a) | $CH_{3}COO^{-} + H_{2}O \rightleftharpoons CH_{3}COOH + OH^{-}$ $H_{3}O^{+} = \sqrt{\frac{K_{a} \times K_{w}}{[CH_{3}COO^{-}]}}$ $= \sqrt{\left(\frac{1.74 \times 10^{-5} \times 1 \times 10^{-14}}{0.420}\right)}$ $= 6.44 \times 10^{-10}$ $pH = -\log 6.44 \times 10^{-10}$ $= 9.19$ | Correct process to determine pH. | Correct answer, including significant figures. | | | (b)(i)
(ii) | CaF ₂ \rightleftharpoons Ca ²⁺ + 2F ⁻
$K_s = [Ca^{2+}] [F^-]^2$
Let solubility be 's':
$[Ca^{2+}] = s$
$[F^-] = 2s$
$K_s = 4s^3$
$s = \sqrt[3]{\frac{3.20 \times 10^{-11}}{4}}$
$= 2.00 \times 10^{-4} \text{ mol L}^{-1}$ | Correct equilibrium equation. Method correct for determining solubility. | • Correct solubility of CaF ₂ calculated, including unit, including significant figures. | | | (c)(i) | In a saturated solution:
$Fe(OH)_3 \rightleftharpoons Fe^{3+} + 3OH^-$
As the pH is lowered, $[H_3O^+]$ increases. The H_3O^+ will remove and neutralise $OH^-/$
$H_3O^+ + OH^- \rightarrow 2H_2O$
A decrease in $[OH^-]$ will result in the forward reaction being favoured, to restore equilibrium / minimise the change.
This causes more solid $Fe(OH)_3$ to dissolve, i.e. the solubility of $Fe(OH)_3$ increases / so that $[Fe^{3+}][OH^-]$ will again equal K_s . | • Recognises Fe(OH) ₃ is more soluble when the pH is lowered. | • Explains that the solubility of Fe(OH) ₃ increases due to removal of OH ⁻ from the equilibrium. | • Fully explains, using equilibrium principles, how the solubility of Fe(OH) ₃ increases when the pH is lowered. Must include neutralisation equation. | |--------|--|---|---|--| | (ii) | The SCN ⁻ ions can form a complex ion with Fe^{3+} ions: $Fe^{3+} + SCN^{-} \rightarrow [FeSCN]^{2+}$ Since the Fe^{3+} are removed from the equilibrium, more $Fe(OH)_3$ dissolves to replace some of the Fe^{3+} , i.e. equilibrium will shift towards the products / speed up the forward reaction. As a result, the solubility of $Fe(OH)_3$ increases. | • Identifies that the solubility of Fe(OH) ₃ will increase when KSCN is added. | • Explains that the solubility of Fe(OH) ₃ will increase due to removal of Fe ³⁺ from the equilibrium / formation of a complex ion. | • Fully explains, using equilibrium principles, how the solubility of the Fe(OH) ₃ solid increases when KSCN is added. Must include complex ion equation. | | NØ | N1 | N2 | A3 | A4 | M5 | M6 | E7 | E8 | |---------------------------------------|----|----|----|----|----|----|------------------------|----| | No response;
no relevant evidence. | 1a | 2a | 3a | 4a | 3m | 4m | 2e, with a minor error | 2e | | Q | Evidence | Achievement | Merit | Excellence | |-----------------|--|--|--|---| | TWO (a)(i) (ii) | Volume from curve at pH $10.0 = 15 - 16.0$ mL As the HCl is added, the H_3O^+ ions are neutralised by the basic component of the buffer, CH_3NH_2 , according to the equation below: $CH_3NH_2 + H_3O^+ \rightarrow CH_3NH_3^+ + H_2O$ OR $CH_3NH_2 + HCl \rightarrow CH_3NH_3^+ + Cl^-$ Since the H_3O^+ are removed from the solution, the pH of the solution does not significantly change. | Correct volume measured from curve (15 – 16 mL). Identifies the acid / H₃O⁺ is removed / neutralised by the buffer. | • Explains that the CH ₃ NH ₂ neutralises the H ₃ O ⁺ , with supporting equation. | | | (b)(i)
(ii) | $CI^{-} > CH_{3}NH_{3}^{+} > CH_{3}NH_{2} = H_{3}O^{+} > OH^{-}$ $CH_{3}NH_{3}^{+} + H_{2}O \Rightarrow CH_{3}NH_{2} + H_{3}O^{+}$ $K_{a} = 2.51 \times 10^{-11} = \frac{\left[H_{3}O^{+}\right]^{2}}{\left(0.168 \times \frac{25}{45}\right)}$ $[H_{3}O^{+}] = 1.53 \times 10^{-6} \text{ mol } L^{-1}$ $pH = -\log 1.53 \times 10^{-6} = 5.82$ | Four correct species. Recognises the solution at the equivalence point is acidic. | Correct order for all. Correct process to determine pH, but minor error, e.g. incorrect dilution of CH₃NH₃⁺. | Correct pH, including significant figures. | | (c) | Electrical conductivity in solution requires ions. The initial solution is the weak base, methanamine. It only partially dissociates to produce a lower [ions] , i.e. $CH_3NH_3^+$ and OH^- ions. This means there is mainly CH_3NH_2 present, which has no charge. The solution is therefore a poor conductor of electricity compared to the solution at the equivalence point. $CH_3NH_2 + H_2O \rightleftharpoons CH_3NH_3^+ + OH^-$ The solution at the equivalence point is made up of the products from the titration / $CH_3NH_3^+$ and CI^- . As there are more ions in solution / higher [ions] the solution at the equivalence point is a better conductor. | Recognises electrical conductivity
in solution requires ions . | Links the identified [ions] to the electrical conductivity of ONE solution. | Full explanation of the electrical conductivity of BOTH solutions, i.e. links [ions] to electrical conductivity, including supporting equation. | | NØ | N1 | N2 | A3 | A4 | M5 | M6 | E7 | E8 | |---------------------------------------|----|----|----|----|----|----|---------|-----------------------------------| | No response;
no relevant evidence. | 1a | 2a | 3a | 4a | 2m | 3m | 1e + 1m | 2e, with minor error or omission. | | Q | Evidence | Achievement | Merit | Excellence | |-------------------------|---|---|--|--| | THREE (a)(i) (ii) (iii) | $K_s = [Ag^+][Cl^-]$ The Ag^+ is a common ion. By increasing $[Ag^+]$, the equilibrium will shift towards the reactants to use up some of the extra Ag^+ , so more solid AgCl will form, i.e. the solubility of AgCl will decrease. Final $[Ag^+] = \frac{70}{120} \times 0.0220 = 0.0128 \text{ mol L}^{-1}$ Final $[Cl^-] = \frac{50}{120} \times 0.0550 = 0.0229 \text{ mol L}^{-1}$ $Q = [Ag^+][Cl^-] = 0.0128 \times 0.0229 = 2.94 \times 10^{-4}$ Since $Q > K_s$, AgCl will form a precipitate. | Correct K_s expression. Identifies Ag⁺ is a common ion / [Ag⁺] increases. Correct substitution into Q expression. OR Correct [Ag⁺] or [Cl⁻]. | Explains the effect of increasing [Ag⁺] using equilibrium principles. Correct process to determine <i>Q</i> and compare with <i>K</i>_s. | • Correct calculation and comparison with K_s to determine whether AgCl will form a precipitate. | | (b)(i) (ii) | The solution will function as a buffer over a pH range 2.74 – 4.74 $(pK_a + / - 1)$.
$n(HCOONa) = \frac{m}{M} = \frac{5.11}{68} = 0.0751 \text{ mol}$ $c(HCOO^-) = \frac{n}{V} = \frac{0.0751}{0.125} = 0.601 \text{ mol } L^{-1}$ $K_a = 1.82 \times 10^{-4} = \frac{[HCOO^-][H_3O^+]}{[HCOOH]}$ $0.601 \times [H_2O^+]$ | Identifies pH range for buffer. Determines n(HCOO⁻). OR Correct substitution into K_a expression. | Correct pH. | Correct calculation of the buffer's pH. AND | | (iii) | $= \frac{0.601 \times \left[\text{H}_3 \text{O}^+ \right]}{0.105}$ $[\text{H}_3 \text{O}^+] = 3.18 \times 10^{-5} \text{ mol L}^{-1}$ $\text{pH} = -\log \left[\text{H}_3 \text{O}^+ \right] = 4.50$ Since the pH of the solution falls within the buffer zone (2.74 – 4.74), it will function as a buffer. However, as the pH > pK_a, / this means [HCOO^-] > [HCOOH], so the buffer will be more effective against added strong acid. | Buffer is more effective against acid. | Evaluates ability of solution to
function as a buffer (could have
an incorrect pH). | A full evaluation of the ability of the solution to function as a buffer. | | NØ | N1 | N2 | A3 | A4 | M5 | M6 | E7 | E8 | |---------------------------------------|----|----|----|----|----|----|-----------------------------------|----| | No response;
no relevant evidence. | 1a | 2a | 3a | 4a | 2m | 3m | 2e, with minor error or omission. | 2e | ## **Cut Scores** | Not Achieved | Achievement | Achievement with Merit | Achievement with Excellence | |--------------|-------------|------------------------|-----------------------------| | 0 – 8 | 9 – 13 | 14 – 19 | 20 – 24 |