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QUESTION ONE: MEXICAN SPADEFOOT TOAD

The Mexican spadefoot toad (Spea multiplicata)
is found in southwestern United States and
Mexico. In ponds with low abundance of food
resources and high density levels of tadpoles,
two populations predominate. One population
(called the omnivore morph) has a round body

diet 0_{ algac and small crustaceans found on the
bottom of the pond. The other population (called
the carnivore morph) has a narrow body with a
short intestine, enlarged jaw.muscles, teeth-like
mouthparts, and has a specialist|carnivorous diet
of fairy shrimps found in the water column.

On the other hand, in ponds of high abundance
of food resources and low density levels of
tadpoles, only one population, of intermediate

= Figure 1: Mexican spadefoot toad tadpoles from
phenotype, is found.

a high density, low food resource pond. Top: the

_ _ _ omnivore morph. Bottom: the carnivore morph.
Compare and contrast the impact of disruptive

and stabilising selection on genetic diversity 1/ .
AND discuss how speciation could occur in the \HQCJ

Mexican spadefoot toad. YA
In your answer you should: =

http://labs.bio.unc.edu/pfennig/T.abSite/Photos. htm]

. describe genetic variation

. describe the terms disruptive and stabilising selection, and describe which population(s) of
Mexican spadefoot toad tadpole is associated with each type of selection

. explain the selection pressures that promote disruptive selection, AND the selection pressures
that promote stabilising selection in the Mexican spadefoot toad tadpole.

Well labelled diagrams can be used to support your answer.
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QUESTION TWO: THREE-SPINED STICKLEBACK

The three-spined stickleback (Gasterosteus
aculeatus) is a small (30 — 90 mm) fish found
in the Northern Hemisphere. Some populations
live in coastal marine habitats, while other
populations live in freshwater.

Three-spined sticklebacks lack the scales typical
of most fishes; instead they possess (protective)
bony plates and spines. Three-spined

stickleback populations living in a marine
habitat have high numbers of bony plates and
long spines. whereas freshwater populations
typically have low numbers of bony plates and
short spines. Genetic evidence suggests that
a mutation in the Ectodysplasin (EDA) gene 7|
causes variation in plate number, and a mutation:
in the PITX1 gene causes variation in spine !
length. ll

The main predators of three-spined stickleback
in marine habitats are larger fish. In freshwater
habitats, grasping insects (such as dragonfly
larvae) are the main predators, especially of
juvenile three-spined stickleback. Marine
habitats typically have low amounts of shelter—
suitable for the Lhree:spincd stickleback.
whereas freshwater habitats have high
amounts of shelter. The growth rate and
sticklebacks is highest when the bony plate
number is lowest.

Discuss how EDA and PITX1 gene mutations
AND natural sclection have affected evolution
in three-spined stickleback.

In your answer you should:

Figure 2. Top: Typical three-spined stickleback
from a marine population. Bottom: Typical
three-spined stickleback from a freshwater
population. Fish have been stained with alizarin
red to highlight bony plates and spines.
http://unews.utah.edu/wp-content/uploads/
sticklebackfigurel.jpg

Figure 3. Typical three-spined stickleback
predators in ocean and freshwater habitats.

hitp:/flearn.genetics. utah.edu/content/selection/stickleback/

o describe the terms mutation AND natural selection

. explain how selection pressures in marine AND freshwater habitats act differently on bony

plate number and spine length

° discuss the roles of mutation AND natural selection on three-spined stickleback evolution.
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QUESTION THREE: KAKARIKI

Kakariki are the most common species of
parakeet in the genus Cyanoramphus and

are distributed throughout the South Pacific
(Figure 5). Aotearoa has the largest number
of species. Kakariki live in a wide range

of habitats, including subantarctic tussock
(Antipodes Island kakariki and Reischek’s
kakariki), beech forests in mainland Aoteoroa
(vellow-crowned kakariki and orange-fronted
kakariki), and tropical rainforests (New
Caledonian red-crowned kakariki).

Figure 4. Forbes® kakariki, Chatham Island.

www.nzbirdsonline.org. nz/species/forbes-parakeet
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Figure 5: Kakariki distribution in the South Pacific.
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The evolutionary relationships of kakariki species have been determined using mitochondrial DNA
sequence analysis. The phylogenetic tree based on this analysis is shown in Figure 6. The climate during
this period is shown in Figure 7, and the reconstructed vegetation cover at the height of the last glacial

period is shown in Figure 8.
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Figure 6. Phylogenetic trec for Cyanoramphus.
The time scale for evolutionary divergence is indicated above.

Adapted from Boon, W. M, ef af. (2001). *Molecular systematics and conservation of the kakariki (Cyanoramphus spp.y’,
Science for Conservation, 176 (Department of Conservation, Wellington).
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Figure 7. Glacial periods in Aotearoa.

Adapted from www.teara.govt.nz/en/

diagram/10741/glacial-periods-in-new-zealand

Figure 8. Aotearoa vegetation cover 19000 - 29000
years b. p. as reconstructed from pollen, macrofossil,
beetle and geographic evidence.

Adapted from: Newnham, R, ef al. (2010). *The vegetation
cover of New Zealand during the last glacial maximum’, ferra
australis, 32, p. 59 (ANU L Press, Canberra). http://press.anu.
edu.au/wp-content/uploads/2011/02/ch0417.pdf
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Discuss the pattern of evolution in kakariki, and the factors that have affected kakariki evolution. ASSESSOR'S

In your answer you should:

describe the evolutionary pattern AND type of speciation indicated by the resource material

explain the origin and distribution of kakariki in Aotearoa with reference to the phylogenetic
tree

. using the information provided, discuss how biological and geographical factors have
contributed to kakariki speciation.
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Grade
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Annotation

This is an E7 because the selective pressure is identified as high intraspecific
competition as being high in low abundance of food and high density levels of
tadpoles. The high intraspecific competition is linked to disruptive selection
and the low intraspecific competition is linked to stabilising selection. The
adaptations linked to the survival and success of each phenotype is explained
and is also linked to sympatric speciation in the disruptive selection caused by
reproductive isolating mechanisms.

Explains the process of natural selection in the context of the example
provided of the three-spined stickleback fish. The role of mutation is linked to
natural selection. Both biotic and abiotic factors are discussed and linked to
the correct habitat.

Adaptive radiation and allopatric speciation are explained with reference to
glaciation. Integrated information from the resource material to discuss how
biological and geographical events have contributed to Adaptive radiation and
allopatric speciation.




